K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

câu a

15! có chứa 2(hoặc 4,6,8,...)*5 cho ra kết quả có tận cùng =0

0+2=2 vậy tận cùng của 15!+2 bằng 2

22 tháng 10 2023

nhanh tích cho nhee

22 tháng 10 2023

tui làm b nha do a không biết làm

A=5+32+33+...+32018

3A=15+33+34+...+32019

3A-A=(15+33+34+...+32019)-(5+32+33+...+32018)

2A=32019+15-(5+32)

2A=32019+15-14

2A=32019+1

2A-1=32019+1-1

2A-1=32019

vậy n = 2019

 

15 tháng 10 2015

a) B = 1 + 4 + 42 + ... + 4100

4B = 4 + 42 + ... + 4101

4B - B = 4101 - 1

3B = 4101 - 1

=> 4101 - 1 + 1 = 4n

=> 4101 = 4n

=> n = 101

 

26 tháng 10 2023

a: Đặt \(A=\overline{2a3b}\)

A chia hết cho2  và 5 khi A chia hết cho 10

=>b=0

=>\(A=\overline{2a30}\)

A chia hết cho 9

=>2+a+3+0 chia hết cho 9

=>a+5 chia hết cho 9

=>a=4

Vậy: \(A=2430\)

b: \(42=2\cdot3\cdot7;54=3^3\cdot2\)

=>\(ƯCLN\left(42;54\right)=2\cdot3=6\)

=>\(ƯC\left(42;54\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

c: \(n+4⋮n+1\)

=>\(n+1+3⋮n+1\)

=>\(3⋮n+1\)

=>\(n+1\in\left\{1;-1;3;-3\right\}\)

=>\(n\in\left\{0;-2;2;-4\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;2\right\}\)

 

18 tháng 10 2016

a) bn tự lm

b) n + 2 chia hết cho n2 + 1

=> n.(n + 2) chia hết cho n2 + 1

=> n2 + 2n chia hết cho n2 + 1

=> n2 + 1 + 2n - 1 chia hết cho n2 + 1

Do n2 + 1 chia hết cho n2 + 1 => 2n - 1 chia hết cho n2 + 1 (1)

Lại có: n + 2 chia hết cho n2 + 1 (theo đề bài)

=> 2.(n + 2) chia hết cho n2 + 1

=> 2n + 4 chia hết cho n2 + 1 (2)

Từ (1) và (2) => (2n + 4) - (2n - 1) chia hết cho n2 + 1

=> 2n + 4 - 2n + 1 chia hết cho n2 + 1

=> 5 chia hết cho n2 + 1

Mà \(n\in N\) nên \(n^2+1\ge1\)

\(\Rightarrow n^2+1\in\left\{1;5\right\}\)

\(\Rightarrow n^2\in\left\{0;4\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

Thử lại ta thấy trường hợp n = 2 không thỏa mãn

Vậy n = 0

c) bn tự lm

18 tháng 10 2016

đon giản wá