Câu 1. Tính phép tính sau: \(\dfrac{5^4\cdot20^4}{25^5\cdot4^5}\)
Câu 2. So sánh các số sau: \(2^{150}\) và \(3^{100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
\(\dfrac{-25}{37}\&\dfrac{-20}{31}\)
Ta thấy \(\dfrac{-25}{37}< \dfrac{-20}{37}\)
mà \(\dfrac{-20}{37}< \dfrac{-20}{31}\)
\(\Rightarrow\dfrac{-25}{37}< \dfrac{-20}{31}\)
Câu 2 :
\(\dfrac{2}{3}\&\dfrac{5}{7}\)
\(\dfrac{2}{3}:\dfrac{5}{7}=\dfrac{2}{3}.\dfrac{7}{5}=\dfrac{14}{15}< 1\)
\(\Rightarrow\dfrac{5}{7}>\dfrac{2}{3}\) Câu 3 : \(\dfrac{8}{13}\&\dfrac{5}{7}\)Ta thấy \(\dfrac{8}{13}:\dfrac{5}{7}=\dfrac{8}{13}.\dfrac{7}{5}=\dfrac{56}{65}< 1\)
\(\Rightarrow\dfrac{8}{13}< \dfrac{5}{7}\)\(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{\left(5.20\right)^4}{\left(25.4\right)^5}=\dfrac{100^4}{100^5}=\dfrac{1}{100}\)
\(=\frac{5^5\cdot\left(4.5\right)^3-5^4\cdot\left(4.5\right)^3+5^7\cdot4^5}{\left(5^3\right)^3\cdot4^5}=\frac{5^8.4^3-5^7.4^3+5^7.4^5}{5^9.4^5}=\frac{5^7.4^3.\left(5-1+4^2\right)}{5^7.4^3.\left(5^2.4^2\right)}\)
= \(\frac{4+4^2}{5^2.4^2}=\frac{4.5}{5^2.4^2}=\frac{1}{4.5}=\frac{1}{20}\)
\(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{\left(5.20\right)^4}{\left(25.4\right)^5}=\dfrac{100^4}{100^5}=\dfrac{1}{10}\)
\(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{\left(5.20\right)^4}{\left(25.4\right)^5}=\dfrac{100^4}{100^5}=\dfrac{1}{100}\)
\(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(5.20\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
mình đầu tiên
\(\frac{5^4.20^4}{25^5.4^5}=\frac{5^4.5^4.4^4}{5^{10}.4^5}=\frac{1}{5^2.4}=\frac{1}{100}\)
Chúc hok tốt
câu 1: A={0;1;2;3}
Câu 2: A={13;14;15}
Câu 3:E={1;2;3;4}
Câu 4: 25
Câu 5:5
Câu 6: 62=36
43=64
Vậy 43 lớn hơn
Câu 1: \(\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot\left(2^2\cdot5\right)^4}{\left(5^2\right)^5\cdot\left(2^2\right)^5}=\dfrac{5^4\cdot2^8\cdot5^4}{5^{10}\cdot2^{10}}=\dfrac{5^8\cdot2^8}{5^{10}\cdot2^{10}}=\dfrac{1}{100}\)
Câu 2 : \(2^{150}\&3^{100}\)
Ta có : \(2^{150}=\left(2^3\right)^{50}=8^{50}\)
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
Vì \(8^{50}< 9^{50}nên2^{150}< 3^{100}\)