Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 2008.\(\left(\dfrac{1}{2007}-\dfrac{2009}{1004}\right)-2009\left(\dfrac{1}{2007}-2\right)\)
=\(\left(2008.\dfrac{1}{2007}-2008.\dfrac{2009}{1004}\right)-\left(2009.\dfrac{1}{2007}-2009.2\right)\)
=\(\left(\dfrac{2008}{2007}-2.2009\right)-\left(\dfrac{2009}{2007}-2.2009\right)\)
=\(\left(\dfrac{2008}{2007}-4018\right)-\left(\dfrac{2009}{2007}-4018\right)\)
=\(\dfrac{2008}{2007}-4018-\dfrac{2009}{2007}+4018\)
=\(\left(\dfrac{2008}{2007}-\dfrac{2009}{2007}\right)+\left[\left(-4018\right)+4018\right]\)
=\(\dfrac{1}{2007}.\left(2008-2009\right)+0\)
=\(\dfrac{1}{2007}.\left(-1\right)+0\)
=\(\dfrac{-1}{2007}\)
2.\(\dfrac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3+4^5}\)
=\(\dfrac{5^5.\left(2^2.5\right)^3-5^4.\left(2^2.5\right)^3+5^7.\left(2^2\right)^5}{\left[\left(2^2.5\right)+5\right]^3+\left(2^2\right)^5}\)
=\(\dfrac{5^5.2^6.5^3-5^4.2^6.5^3+5^7.2^{10}}{2^6.5^3+5^3+2^{10}}\)
=\(\dfrac{5^9.2^6-5^7.2^6+5^7.2^{10}}{5^3.\left(2^6+1\right)+2^{10}}\)
=\(\dfrac{5^7.2^6\left(5^2-1-2^4\right)}{5^3\left(2^6+1\right)+2^{10}}\)
bí rồi
a) \(\left(-\frac{5}{2}\right)^2:\left(-15\right)-\left(-0,45+\frac{3}{4}\right).\left(-1\frac{5}{9}\right)\)
= \(-\frac{25}{4}:\left(-15\right)-\left(\frac{9}{20}+\frac{15}{20}\right).\left(-\frac{14}{9}\right)\)
=\(-\frac{25}{4}.\frac{1}{-15}-\frac{6}{5}.\left(-\frac{14}{9}\right)\)
= \(\frac{-5}{12}-\frac{8}{5}\)
= \(\frac{\left(-25\right)-96}{60}\)
= \(\frac{\left(-25\right)+\left(-96\right)}{60}\)
=\(\frac{121}{60}\)
b) \(\left(\frac{-1}{3}\right)-\left(\frac{-3}{5}\right)^0+\left(1-\frac{1}{2}\right)^2:2\)
= \(\left(\frac{-1}{3}\right)-1+\left(\frac{1}{2}\right)^2.\frac{1}{2}\)
=\(\left(\frac{-1}{3}\right)-\frac{3}{3}+\frac{1}{4}.\frac{1}{2}\)
= \(\frac{-4}{3}+\frac{1}{8}\)=\(\frac{-32+3}{24}\)
=\(\frac{-29}{24}\)
c) E=\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
=\(\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.6^9}{2^{10}.3^8+6^8.20}\)
=\(\frac{2^{10}.3^8-2.6^9}{2^{10}.3^8+6^8.20}\)
=\(\frac{3}{5}\)
d)\(\frac{5^4.20^4}{25^5.4^5}\)
=\(\frac{\left(5.20\right)^4}{\left(25.4\right)^5}\)
=\(\frac{100^4}{100^5}\)
=\(\frac{1}{100}\)
\(\frac{5^4.20^4}{25^5.4^5}=\frac{5^4.5^4.4^4}{5^{10}.4^5}=\frac{1}{5^2.4}=\frac{1}{100}\)
Chúc hok tốt
\(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{\left(5.20\right)^4}{\left(25.4\right)^5}=\dfrac{100^4}{100^5}=\dfrac{1}{100}\)
\(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{\left(5.20\right)^4}{\left(25.4\right)^5}=\dfrac{100^4}{100^5}=\dfrac{1}{10}\)
\(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{\left(5.20\right)^4}{\left(25.4\right)^5}=\dfrac{100^4}{100^5}=\dfrac{1}{100}\)
a)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\\A = \left( {\frac{{30}}{{15}} + \frac{5}{{15}} - \frac{6}{{15}}} \right) - \left( {\frac{{105}}{{15}} - \frac{9}{{15}} - \frac{{20}}{{15}}} \right) - \left( {\frac{3}{{15}} + \frac{{25}}{{15}} - \frac{{60}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} - \left( {\frac{{ - 32}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} + \frac{{32}}{{15}}\\A = \frac{{ - 15}}{{15}}\\A = - 1\end{array}\)
b)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right)\\A = 2 + \frac{1}{3} - \frac{2}{5} - 7 + \frac{3}{5} + \frac{4}{3} - \frac{1}{5} - \frac{5}{3} + 4\\A = \left( {2 - 7 + 4} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right) + \left( { - \frac{2}{5} + \frac{3}{5} - \frac{1}{5}} \right)\\A = - 1 + 0 + 0 = - 1\end{array}\)
\(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(5.20\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
mình đầu tiên
\(=\frac{5^5\cdot\left(4.5\right)^3-5^4\cdot\left(4.5\right)^3+5^7\cdot4^5}{\left(5^3\right)^3\cdot4^5}=\frac{5^8.4^3-5^7.4^3+5^7.4^5}{5^9.4^5}=\frac{5^7.4^3.\left(5-1+4^2\right)}{5^7.4^3.\left(5^2.4^2\right)}\)
= \(\frac{4+4^2}{5^2.4^2}=\frac{4.5}{5^2.4^2}=\frac{1}{4.5}=\frac{1}{20}\)