Cho ΔMNP có MN < MP, Trên cạnh MP lấy điểm A sao cho MN = MA. Gọi B là trung điểm của đoạn NA.
a) Chứng minh ΔMNB = ΔMAB.
b) Tia MB cắt cạnh NP tại D. Chứng minh ND = DA.
c) Trên tia đối của tia NM lấy điểm E sao cho NE = AP. Chứng minh 3 điểm A, D, E thẳng hàng.
Giúp mk với ạ !
a: Xét ΔMNB và ΔMAB có
MN=MA
NB=AB
MB chung
Do đó: ΔMNB=ΔMAB
b: Xét ΔMND và ΔMAD có
MN=MA
\(\widehat{NMD}=\widehat{AMD}\)
MD chung
Do đó: ΔMND=ΔMAD
Suy ra: DN=DA
c: Xét ΔDNE và ΔDAP có
DN=DA
\(\widehat{DNE}=\widehat{DAP}\)
NE=AP
Do đó: ΔDNE=ΔDAP
Suy ra: \(\widehat{NDE}=\widehat{ADP}\)
=>\(\widehat{NDE}+\widehat{NDA}=180^0\)
=>A,D,E thẳng hàng