K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

Cảm ơn bạn nhiều lắm !vui

13 tháng 11 2016

1) Dễ thấy tam giác ADN = tam giác ABM ( cgv-cgv) 

nên AN = AM  và góc NAC = góc MAB => góc NAM = 90 độ ( cùng phụ góc DAM )

hbh AMFN có AN = AM ; góc NAM = 90 độ 

=> AMFN là hình vuông 

2)

14 tháng 11 2016

câu 2, câu 3

giúp mk với chứ câu 1 mk biết làm rồi

4 tháng 11 2018

A B C D M N F O E I J x

a) Xét \(\Delta\)ABM và \(\Delta\)ADN có: ^ABM = ^ADN (=900); AB=AD; BM=DN  => \(\Delta\)ABM = \(\Delta\)ADN (c.g.c)

=> AM=AN (2 canh tương ứng);  ^BAM = ^DAN (2 góc tương ứng). Mà ^BAM + ^DAM = 900

=> ^DAN + ^DAM = ^MAN = 900 => AM vuông góc AN

Ta có: MF//AN; NF//AM; AM vuông góc AN nên ^MAN = ^AMF = ^ANF = 900

Do đó: Tứ giác ANFM là hình chữ nhật. Lại có: AM=AN (cmt) => Tứ giác ANFM là hình vuông (đpcm).

b) Gọi I và J lần lượt là hình chiếu của F trên 2 đường thẳng CD và BC

Tứ giác ANFM là hình vuông => FM=FN

Xét tứ giác CNFM có: ^MCN = ^MFN = 900 => ^FNC + ^CMF = 1800 => ^FNC = ^FMJ hay ^FNI = ^FMJ

Xét \(\Delta\)FIN và \(\Delta\)FJM có: ^FIN = ^FJM (=900); FN=FM; ^FNI = ^FMJ

=> \(\Delta\)FIN = \(\Delta\)FJM (Ch.gn) => FI = FJ (2 cạnh tương ứng)

Xét ^MCN: Có FI và FJ là k/c từ điểm F tới 2 cạnh của góc này; FI=FJ

=> F nằm trên đường phân giác của ^MCN (đpcm).

c) Gọi giao điểm của tia AD và CF là E.

CF là phân giác ^MCN => ^FCN = ^MCN/2 = 450 => ^FCN = ^ACD = 450 

=> \(\Delta\)ACE vuông tại C có đường phân giác CD. Mà CD vuông góc AE

=> \(\Delta\)ACE vuông cân tại C = >CD đồng thời là đường trung tuyến => D là trung điểm AE

Suy ra: OD là đường trung bình \(\Delta\)FAE => OD // EF hay OD // CF (1)

Dễ c/m: BD // CF (Do ^DBC + ^BCF = 450 + 1350 = 1800)                  (2)

Từ (1) và (2) => 3 điểm B;D;O thẳng hàng (đpcm).

d) Ta thấy: B;D;O là 3 điểm thẳng hàng; BD cố định nên O luôn thuộc đường thẳng BD cố định khi M di động trên Cx.

4 tháng 11 2018

câu e đâu bạn :v

12 tháng 12 2017

A B C D M O H N F K 1 1 2 3 2 2

N, D, C thẳng hàng nhé, vẽ bị lệch.

a, Vì ABCD là hình vuông (GT)

\(\left\{{}\begin{matrix}AB=BC=CD=DA\\\widehat{BAD}=\widehat{ADC}=\widehat{DCB}=\widehat{ABC}=90^0\end{matrix}\right.\) (t/c hv)

Ta có: \(\widehat{ADN}+\widehat{ADC}=180^0\) (2 góc kề bù)

\(\widehat{ADC}=90^0\left(CMT\right)\)

\(\widehat{ADN}=90^0\)

Xét ΔABM và ΔADN có:

AB = AD (CMT)

\(\widehat{ABM}=\widehat{ADN}\left(=90^0\right)\)

BM= DN (GT)

⇒ ΔABM = ΔADN (c.g.c)

⇒ AM = AN (2 cạnh tương ứng)

Xét hbh AMFN có:

AM = AN (CMT)

⇒ AMFN là hthoi (dhnb hthoi)

Vì ΔABM = ΔADN(CMT)

\(\widehat{BAM}=\widehat{DAN}\) (2 góc tương ứng)

Ta có: \(\widehat{A_2}+\widehat{BAM}=\widehat{DAB}=90^0\)

\(\widehat{BAM}=\widehat{DAN}\left(CMT\right)\)

\(\widehat{A_2}+\widehat{DAN}=90^0\)

hay \(\widehat{NAM}=90^0\)

Xét hbh AMFN có:

\(\widehat{NAM}=90^0\left(CMT\right)\)

⇒ AMFN là hcn (dhnb hcn)

Ta có: AMFN là hình thoi (CMT)

AMFN là hcn (CMT)

⇒ AMFN là hv (tứ giác vừa là hthoi vừa là hcn thì là hv)

b, Kẻ FH⊥CN (H ∈CN); FK ⊥ BM (K ∈ BM)

Vì FH⊥ CN (c/vẽ)

\(\widehat{FHC}=90^0\) (đ/n 2 đường thẳng vg góc)

Vì FK ⊥ BM (c/vẽ)

\(\widehat{FKC}=90^0\) (đ/n...)

Lại có: \(\widehat{BCD}+\widehat{DCK}=180^0\) (2 góc kề bù)

\(\widehat{BCD}=90^0\left(CMT\right)\)

\(\widehat{DCK}=90^0\)

Xét tứ giác CHFK có:

\(\widehat{DCK}=90^0\Rightarrow\widehat{HCK}=90^0\)

\(\widehat{FHC}=90^0\left(CMT\right)\)

\(\widehat{FKC}=90^0\left(CMT\right)\)

⇒ CHFK là hcn (dhnb hcn)

Vì AMFN là hv (CMT)

\(\Rightarrow\left\{{}\begin{matrix}AM=FM\\AMF=90^0\end{matrix}\right.\) (t/c hv)

Ta có: \(\widehat{M_1}+\widehat{AMF}+\widehat{M_3}=180^0\) (các góc kề bù)

\(\widehat{M_1}+\widehat{M_3}=180^{0^{ }}-\widehat{AMF}=180^0-90^0=90^0\)(1)

\(\widehat{FKM}=90^0\left(CMT\right)\)

⇒ ΔFMK vg tại K

nên \(\widehat{F_1}+\widehat{M_3}=90^0\)(2) (đ/lí tổng 2 gocvs nhọn trong tam giác vg)

Từ (1) và (2) ⇒ \(\widehat{M_1}=\widehat{F_1}\)

Xét ΔABM có:

\(\widehat{ABM}=90^0\left(\widehat{ABC}=90^0\right)\)

⇒ ΔABM vg tại B

Xét Δvg ABM và Δvg MKF có:

\(\widehat{M_1}=\widehat{F_1}\left(CMT\right)\)

AM=FM (CMT)

⇒ Δvg ABM = Δvg MKF (ch-gn)

\(\Rightarrow\left\{{}\begin{matrix}BM=KF\\AB=MK\end{matrix}\right.\)(2 cạnh tương ứng)

mà AB = BC (CMT)

⇒ MK=BC (=AB)

⇒ MK + CM= BC + CM

hay KC = BM

mà BM = KF (CMT)

⇒ KC = KF (=BM)

Xét hcn CHFK có:

CK = KF (CMT)

⇒ CHFK là hv (dhnb hv)

⇒ CF là tia p/g của \(\widehat{HCK}\) (t/c hv)

\(\widehat{HCK}=90^0\)(góc của hv CHFK)

\(\widehat{HCF}=\dfrac{1}{2}\widehat{HCK}=\dfrac{1}{2}90^{0^{ }}=45^0\)

Vì ABCD là hv (GT)

⇒ CA là tia p/g \(\widehat{BCD}\) (t/c hv)

\(\Rightarrow\widehat{C_2}=45^0\)

Ta có: \(\widehat{ACF}=\widehat{HCF}+\widehat{C_2}=45^0+45^{0^{ }}=90^0\)

c, Vì \(\widehat{ACF}=90^0\left(CMT\right)\)

⇒ ΔACF vg tại C

Xét Δvg ACF có:

CO là đường trung tuyến ứng với cạnh huyền OF (O là trung điểm AF)

\(CO=\dfrac{1}{2}AF\) (t/c đường trung tuyến trong tam giác vg)

\(OA=\dfrac{1}{2}AF\)(O là trung điểm AF)

⇒ CO = OA

Xét ΔABO và ΔCBO có:

OA = OC (CMT)

OB chung

BA=BC (CMT)

⇒ΔABO = ΔCBO (c.c.c)

\(\widehat{ABO}=\widehat{CBO}\) (2 góc tương ứng)

mà tia BO nằm giữa 2 tia BA và BC

⇒ BO là tia p/g \(\widehat{ABC}\) (3) (đ/n tia p/g 1 góc)

Vì ABCD là hv (GT)

⇒ BD là tia p/g \(\widehat{ABC}\) (t/c hv) (4)

Từ (3) và (4) ⇒ BO trùng BD

⇒ 3 điểm O, B, D thẳng hàng

Xem hộ tớ nhầm chỗ nào k nhé