K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

giúp vs sssss

a: Xét (O) có

ΔAIC nội tiếp

AC là đường kính

Do đó: ΔAIC vuông tại I

Xét ΔABC vuông tại A có AI là đường cao

nên \(AI^2=BI\cdot CI\)

6 tháng 11 2021

om cái gì là olm mới đúng

Bài 1: 

a: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

c: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

Xét tứ giác BICD có 

BI//CD(cùng vuông góc với AC)

CI//BD(cùng vuông góc với AB)

Do đó: BICD là hình bình hành

Bài 2:

a: Xét (O) có 

MN=EF

OH là khoảng cách từ O đến dây MN

OK là khoảng cách từ O đến dây EF
Do đó: OH=OK

Xét ΔAHO vuông tại H và ΔAKO vuông tại K có

AO chung

OH=OK

Do đó: ΔAHO=ΔAKO

Suy ra: AH=AK

b: Xét ΔOHM vuông tại H và ΔOKE vuông tại K có 

OM=OE

OH=OK

Do đó: ΔOHM=ΔOKE

Suy ra: HM=KE

Ta có: AM+MH=AH

AE+EK=AK

mà AH=AK

và HM=KE

nên AM=AE

20 tháng 2 2019

Giúp mình câu b,c,d nhanh nhé! Mai mình nộp. Cmon mấy bạn

2 tháng 6 2020

câu này dễ bạn tự làm thư đi

Bài 1: Điểm C nằm giữa hai điểm A và B. Vẽ đường tròn tâm O, đường kính AB và đường tròn tâm O' đường kính BC. Vẽ tiếp tuyến chung của hai đường tròn tiếp xúc với đường tròn tâm O và tâm O' tại D và E. AD cắt BE tại Ma) tam giác MAB là tam giác j?b) chứng minh CDME là hình chữ nhật và MC là tiếp tuyến của 2 đường tròn tâm O và tâm O'c) Kẻ tia Ex vuông góc với EA và tia By vuông góc với...
Đọc tiếp

Bài 1: Điểm C nằm giữa hai điểm A và B. Vẽ đường tròn tâm O, đường kính AB và đường tròn tâm O' đường kính BC. Vẽ tiếp tuyến chung của hai đường tròn tiếp xúc với đường tròn tâm O và tâm O' tại D và E. AD cắt BE tại M
a) tam giác MAB là tam giác j?
b) chứng minh CDME là hình chữ nhật và MC là tiếp tuyến của 2 đường tròn tâm O và tâm O'
c) Kẻ tia Ex vuông góc với EA và tia By vuông góc với BA. Ex cắt By tại N. Chứng minh 3 điểm D,C.N thẳng hàng.
Bài 2: Cho (O) và (O') cắt nhau tại A và B. Tiếp tuyến tại A của (O) cắt (O') tại D. Tiếp tuyến tại A của (O') cắt (O) tại C. Chứng minh rằng:
a) tam giác ABC đồng dạng với tam giác DBA
b) (AC/AD)^2 ( AC trên AD tất cả mũ 2) = BC/BD( AC trên AD tất cả mũ 2 bằng BC/BD)
c) Gọi E là điểm đối xứng của A qua B. Chứng minh ACED là tứ giác nội tiếp.

1
27 tháng 4 2021

Ai giả câu c bài 2 đi ạ khó quá 

20 tháng 12 2017

A C B O I M N H K P O' G

a) Do I thuộc đường tròn (O), AC là đường kính nên \(\widehat{AIC}=90^o\)

Xét tam giác vuông ABC, đường cao AI, ta có:

 \(BI.CI=AI^2\)

b) Ta thấy O là trung điểm AC,OM // AI (Cùng vuông góc với BC) nên OM là đường trung bình tam giác AIC.

\(\Rightarrow IM=MC\)

Xét tam giác AIM và tam giác CNM có:

\(\widehat{IMA}=\widehat{NMC}\)  (Hai góc đối đỉnh)

\(\widehat{AIM}=\widehat{CNM}\)  (Hai góc nội tiếp cùng chắn cung AC)

\(\Rightarrow\Delta AIM\sim\Delta CNM\left(g-g\right)\Rightarrow\frac{AM}{CM}=\frac{IM}{MN}\)

\(\Rightarrow\frac{AM}{CM}=\frac{CM}{MN}\Rightarrow AM.MN=CM^2\)

c) Xét tam giác vuông IAB có PA = PI (Tính chất hai tiếp tuyến cắt nhau) 

nên \(\widehat{PAI}=\widehat{PIA}\Rightarrow\widehat{PBI}=\widehat{PIB}\Rightarrow PI=PB\) 

Suy ra PA = PB hay P là trung điểm AB.

Gọi P' là giao điểm của CK với AB.

Dễ thấy IH // AB nên áp dụng định lý Talet ta có:

\(\frac{IK}{BP'}=\frac{KC}{CP'}=\frac{KH}{AP'}\)

Mà IK = KH nên BP' = AP' hay P' là trung điểm của AB. Vậy \(P'\equiv P\)

Suy ra P, K, C thẳng hàng.

d) Gọi G là giao điểm của O'M với AC. Ta chứng minh \(\widehat{O'GC}=90^o\)

Thật vậy : \(\widehat{GMC}=\widehat{O'MI};\widehat{MCG}=\widehat{INM}=\frac{\widehat{IO'M}}{2}\) (Các góc nội tiếp cùng chắn một cung)

\(\Rightarrow\widehat{MCG}+\widehat{GMC}=\frac{\widehat{IO'M}}{2}+\widehat{O'MI}\)

Lại có \(\widehat{O'IM}=\widehat{O'IM}\Rightarrow2\widehat{O'MI}+\widehat{IO'M}=180^o\)

\(\Rightarrow\frac{\widehat{IO'M}}{2}+\widehat{O'MI}=90^o\Rightarrow\widehat{CMG}+\widehat{GCM}=90^o\)

\(\Rightarrow\widehat{O'IM}+\widehat{MIO}=\widehat{GMC}+\widehat{OCM}=90^o\)

Suy ra OI là tiếp tuyến đường tròn ngoại tiếp tam giác IMN.

22 tháng 12 2018

em có thể nhìn thấy tương lai của mình ở lớp 9 ra sao rồi!!! Nhìn bài giải mà sợ sởn cả tóc gáy luôn trời!