K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

A C B O I M N H K P O' G

a) Do I thuộc đường tròn (O), AC là đường kính nên \(\widehat{AIC}=90^o\)

Xét tam giác vuông ABC, đường cao AI, ta có:

 \(BI.CI=AI^2\)

b) Ta thấy O là trung điểm AC,OM // AI (Cùng vuông góc với BC) nên OM là đường trung bình tam giác AIC.

\(\Rightarrow IM=MC\)

Xét tam giác AIM và tam giác CNM có:

\(\widehat{IMA}=\widehat{NMC}\)  (Hai góc đối đỉnh)

\(\widehat{AIM}=\widehat{CNM}\)  (Hai góc nội tiếp cùng chắn cung AC)

\(\Rightarrow\Delta AIM\sim\Delta CNM\left(g-g\right)\Rightarrow\frac{AM}{CM}=\frac{IM}{MN}\)

\(\Rightarrow\frac{AM}{CM}=\frac{CM}{MN}\Rightarrow AM.MN=CM^2\)

c) Xét tam giác vuông IAB có PA = PI (Tính chất hai tiếp tuyến cắt nhau) 

nên \(\widehat{PAI}=\widehat{PIA}\Rightarrow\widehat{PBI}=\widehat{PIB}\Rightarrow PI=PB\) 

Suy ra PA = PB hay P là trung điểm AB.

Gọi P' là giao điểm của CK với AB.

Dễ thấy IH // AB nên áp dụng định lý Talet ta có:

\(\frac{IK}{BP'}=\frac{KC}{CP'}=\frac{KH}{AP'}\)

Mà IK = KH nên BP' = AP' hay P' là trung điểm của AB. Vậy \(P'\equiv P\)

Suy ra P, K, C thẳng hàng.

d) Gọi G là giao điểm của O'M với AC. Ta chứng minh \(\widehat{O'GC}=90^o\)

Thật vậy : \(\widehat{GMC}=\widehat{O'MI};\widehat{MCG}=\widehat{INM}=\frac{\widehat{IO'M}}{2}\) (Các góc nội tiếp cùng chắn một cung)

\(\Rightarrow\widehat{MCG}+\widehat{GMC}=\frac{\widehat{IO'M}}{2}+\widehat{O'MI}\)

Lại có \(\widehat{O'IM}=\widehat{O'IM}\Rightarrow2\widehat{O'MI}+\widehat{IO'M}=180^o\)

\(\Rightarrow\frac{\widehat{IO'M}}{2}+\widehat{O'MI}=90^o\Rightarrow\widehat{CMG}+\widehat{GCM}=90^o\)

\(\Rightarrow\widehat{O'IM}+\widehat{MIO}=\widehat{GMC}+\widehat{OCM}=90^o\)

Suy ra OI là tiếp tuyến đường tròn ngoại tiếp tam giác IMN.

22 tháng 12 2018

em có thể nhìn thấy tương lai của mình ở lớp 9 ra sao rồi!!! Nhìn bài giải mà sợ sởn cả tóc gáy luôn trời!

6 tháng 11 2021

om cái gì là olm mới đúng

a: Xét (O) có

ΔAIC nội tiếp

AC là đường kính

Do đó: ΔAIC vuông tại I

Xét ΔABC vuông tại A có AI là đường cao

nên \(AI^2=BI\cdot CI\)

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0
1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0