K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

\(\left|x-7\right|+\left|3-x\right|=\dfrac{12}{\left|y+1\right|+3}\)

Ta có: \(\left\{{}\begin{matrix}\left|x-7\right|+\left|3-x\right|\ge\left|x-7+3-x\right|=4\\\dfrac{12}{\left|y+1\right|+3}\le\dfrac{12}{3}=4\end{matrix}\right.\)

Mà theo đề bài: \(\left|x-7\right|+\left|3-x\right|=\dfrac{12}{\left|y+1\right|+3}\)

\(\Rightarrow\left|x-7\right|+\left|3-x\right|=\dfrac{12}{\left|y+1\right|+3}=4\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}3\le x\le7\\y=-1\end{matrix}\right.\)

30 tháng 11 2021

a: \(\Leftrightarrow\left[{}\begin{matrix}2x-5=3-8x\\2x-5=8x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}10x=8\\-6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

14 tháng 7 2019

#)Giải :

a) \(\left|x-1\right|+\left|x+2\right|=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)

b) \(\left|2x-1\right|+\left|y^2-y\right|=0\Leftrightarrow\orbr{\begin{cases}2x-1=0\\y^2-y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=1\\y^2=y\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\y\in\left\{-1;0;1\right\}\end{cases}}}\)

3 tháng 6 2019

ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|x-4\right|\)

\(=\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|4-x\right|\)

\(\ge\left|x-1+4-x\right|+\left|x-2\right|+\left|y-3\right|\)

\(=3+\left|x-2\right|+\left|y-3\right|\)

\(\ge3\)

Dấu "=" xả ra khi \(\hept{\begin{cases}\left(x-1\right)\left(4-x\right)\ge0\\\left|x-2\right|=0\\\left|y-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le4\cdot\\x=2\left(TM\cdot\right)\\y=3\end{cases}}\)

Vậy \(x=2;y=3\)

(x-1) + (x-2) + (x-3) + (x-4) = 3

(x+x+x+x) - (1+2+3+4) = 3

X x 4 - 10 = 3

X x 4 = 3 + 10

X x 4 = 13

x = 13 : 4

x = \(\frac{13}{4}\)

11 tháng 5 2016

Ta có:\(\left|x+1\right|\ge0;\left|x-2\right|\ge0;\left|x+7\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x-2\right|+\left|x+7\right|\ge0\)

\(\Rightarrow5x-10\ge0\)

\(\Rightarrow5x\ge10\)

\(\Rightarrow x\ge2\)

\(\Rightarrow\left|x+1\right|=x+1\)

  \(\left|x-2\right|=x-2\)

  \(\left|x+7\right|=x+7\)

Ta có:\(\left|x+1\right|+\left|x-2\right|+\left|x+7\right|=5x-10\)

\(\Rightarrow x+1+x-2+x+7=5x-10\)

\(\Rightarrow\)\(3x+6=5x-10\)

\(\Rightarrow6+10=5x-3x\)

\(\Rightarrow2x=16\)

\(\Rightarrow x=8\)

Vậy x=8 thỏa mãn

23 tháng 9 2020

                                                          Bài giải

a, \(\left|x+3\right|+\left|y-1\right|=0\)

Mà \(\hept{\begin{cases}\left|x+3\right|\ge0\forall x\\\left|y-1\right|\ge0\forall x\end{cases}}\Rightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy \(\left(x\text{ ; }y\right)=\left(-3\text{ ; }1\right)\)

b, \(\left|x+5\right|+\left|y+1\right|\le0\)

Mà \(\hept{\begin{cases}\left|x+5\right|\ge0\forall x\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\text{ }\left|x+5\right|+\left|y+1\right|=0\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|x+5\right|=0\\\left|y+1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)

Vậy \(\left(x\text{ ; }y\right)=\left(-5\text{ ; }-1\right)\)

6 tháng 7 2019

#)Giải :

\(\left|2-x\right|+2=x\)

\(\Rightarrow\orbr{\begin{cases}\left|2-x\right|=x\\2=x\end{cases}\Rightarrow x=2}\)

Vậy \(x=2\)

\(\left|x-1\right|\left|-x-1\right|=0\)

\(\Rightarrow\orbr{\begin{cases}\left|x-1\right|=0\\\left|-x-1\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)

Vậy \(x\in\left\{1;-1\right\}\)

a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2>-4\\3x-2< 4\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< 2\)

c: \(\Leftrightarrow\left[{}\begin{matrix}3x-1>5\\3x-1< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{4}{3}\end{matrix}\right.\)

d: \(\Leftrightarrow\left[{}\begin{matrix}3x+1>x-2\\3x+1< -x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x>-3\\4x< 1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\)