Cho tam giác ABC vuông tại A.Tìm GTNN của \(T=\frac{1}{sinB}+\frac{1}{sinC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(sinB=x\) , \(sinC=y\)
Áp dụng BĐT Cauchy : \(\left(x+y\right)^2\ge4xy\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Đẳng thức xảy ra khi x = y , hay \(sinB=sinC\Rightarrow\widehat{B}=\widehat{C}\) , suy ra tam giác ABC cân.
Ta có : \(\widehat{B}+\widehat{C}=90^o\)
\(\Rightarrow\cos C=\sin B=\frac{1}{3}\)
Ta có : \(\sin^2C+\cos^2C=1\Rightarrow\sin^2C=1-\cos^2C=\frac{8}{9}\)
\(\Rightarrow\sin C=\frac{2\sqrt{2}}{9}\)
\(a,cosC=\dfrac{5}{13}\\ Ta,có:cos^2C+sin^2C=1\\ \Rightarrow sinC=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\\ cosB+sinC=1\\ \Leftrightarrow cosB+\dfrac{12}{13}=1\\ \Rightarrow cosB=\dfrac{1}{13}\\ tanC=\dfrac{sinC}{cosC}=\dfrac{\dfrac{12}{13}}{\dfrac{5}{13}}=\dfrac{12}{5}\)
\(b,tanB=\dfrac{1}{5}\Rightarrow\dfrac{sinB}{cosB}=\dfrac{1}{5}\Rightarrow cosB=5sinB\\ E=\dfrac{sinB-3cosB}{2sinB+3cosB}=\dfrac{sinB-3.5.sinB}{2sinB+3.5.sinB}=\dfrac{-14sinB}{17sinB}=-\dfrac{14}{17}\)
1. cho tam giác abc nhọn có AB=c , AC=b , BC=a
c/m : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Kẻ đường cao AH vuông góc với BC (H \(\in\) BC)
Xét tam giác AHB vuông tại H ta có: \(\sin B=\frac{AH}{c}\Leftrightarrow AH=sinB\times c\) (1)
Xét tam giác AHC vuông tại H ta có: \(\sin C=\frac{AH}{b}\Leftrightarrow AH=\sin C\times b\) (2)
(1),(2)\(\Rightarrow\sin C\times b=\sin B\times c\Leftrightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\)
Rồi bạn chứng minh tương tự nha!
Câu hỏi của lê thị thu huyền - Toán lớp 9 - Học toán với OnlineMath
Lời giải:
Thay dấu "=" thành $\geq $ ta được BĐT Holder. Dấu "=" xác định tại $\sin A=\sin B=\sin C$ hay tam giác $ABC$ đều.
Chứng minh cụ thể như sau:
\(\frac{1}{1+\frac{1}{\sin A}}+\frac{1}{1+\frac{1}{\sin B}}+\frac{1}{1+\frac{1}{\sin C}}\geq 3\sqrt[3]{\frac{1}{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)
\(\frac{\frac{1}{\sin A}}{1+\frac{1}{\sin A}}+\frac{\frac{1}{\sin B}}{1+\frac{1}{\sin B}}+\frac{\frac{1}{\sin C}}{1+\frac{1}{\sin C}}\geq 3\sqrt[3]{\frac{\frac{1}{\sin A\sin B\sin C}}{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)
Cộng theo vế và rút gọn:
\(\Rightarrow 3\geq 3\frac{1+\sqrt[3]{\frac{1}{\sin A\sin B\sin C}}}{\sqrt[3]{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)
\(\Rightarrow (1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})\geq (1+\sqrt[3]{\frac{1}{\sin A\sin B\sin C}})^3\)
Dấu "=" xảy ra (như đề bài) khi \(\sin A=\sin B=\sin C\Rightarrow \angle A=\angle B=\angle C=60^0\)