Cho x,y là cấc số hữu tỉ khác 0 thỏa mãn x^5+y^5=2×x^3×y^3 . Chứng minh nếu m=1-1/xy thì m là bình phương của 1 số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh \(t=\sqrt{m}=\sqrt{1-\frac{1}{xy}}\) là số hữu tỉ.
Ta có \(t=\sqrt{1-\frac{1}{xy}}=\frac{\sqrt{xy-1}}{\sqrt{xy}}=\frac{\sqrt{xy-1}.\sqrt{xy}.x^2y^2}{\sqrt{xy}.\sqrt{xy}.x^2y^2}\)
\(=\frac{\sqrt{x^6y^6-x^5y^5}}{x^3y^3}=\frac{\sqrt{\left(x^3y^3\right)^2-x^5y^5}}{x^3y^3}\)
Lại có: \(x^5+y^5=2x^3y^3\Rightarrow x^3y^3=\frac{x^5+y^5}{2}\)
Vậy nên \(t=\frac{\sqrt{\left(\frac{x^5+y^5}{2}\right)^2-x^5y^5}}{x^3y^3}=\frac{\sqrt{\left(\frac{x^5-y^5}{2}\right)^2}}{x^3y^3}=\frac{\left|x^5-y^5\right|}{2x^3y^3}=\frac{\left|x^5-y^5\right|}{x^5+y^5}\)
Do x, y hữu tỉ nên \(\frac{\left|x^5-y^5\right|}{x^5+y^5}\in Q\)
Vậy m là bình phương một số hữu tỉ (đpcm).
ta có
\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\Leftrightarrow\left(1-2x\right)\left(1-y\right)+\left(1-2y\right)\left(1-x\right)=\left(1-x\right)\left(1-y\right)\)
\(\Leftrightarrow1-2\left(x+y\right)+3xy=0\)
Vậy \(M=x^2+y^2-xy+\left(1-2\left(x+y\right)+3xy\right)=\left(x+y+1\right)^2\)
vậy ta có đpcm
Với y = 0 thi 1 - xy = 0 là bình phương của số hữu tỷ
Với y \(\ne0\)thì ta chia 2 vế cho y4 thì được
\(\frac{x^5}{y^4}+y=2\frac{x^2}{y^2}\)
\(\Leftrightarrow-y=\frac{x^5}{y^4}-2\frac{x^2}{y^2}\)
\(\Leftrightarrow-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}\)
\(\Leftrightarrow\Leftrightarrow1-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}+1=\left(\frac{x^3}{y^2}-1\right)^2\)
Vậy 1 - xy là bình phương của 1 số hữu tỷ
\(\frac{1-2x}{1-x}=1\)
\(\Leftrightarrow1-x=1-2x\)
\(\Leftrightarrow-x+2x=1-1\)
\(\Leftrightarrow x=0\)
Tương tự ta cũng có \(y=0\)
Khi đó : \(x^2+y^2-xy=0^2+0^2-0\cdot0=0=0^2\left(đpcm\right)\)