Tìm n biết C =3n^2+1/n+2 với C là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Với $n$ nguyên, để $\frac{-18}{n}$ là số nguyên thì $n$ là ước của $-18$
$\Rightarrow n\in \left\{\pm 1; \pm 2; \pm 3; \pm 6; \pm 9; \pm 18\right\}$
b.
Với $n$ nguyên, để $\frac{n+7}{3n-1}$ nguyên thì:
$n+7\vdots 3n-1$
$\Rightarrow 3(n+7)\vdots 3n-1$
$\Rightarrow (3n-1)+22\vdots 3n-1$
$\Rightarrow 22\vdots 3n-1$
$\Rightarrow 3n-1\in\left\{\pm 1; \pm 2; \pm 11; \pm 22\right\}$
$\Rightarrow n\in \left\{\frac{2}{3}; 0; 1; \frac{-1}{3}; 4; \frac{-10}{3}; \frac{23}{3}; -7\right\}$
Do $n$ nguyên nên $n\in\left\{0; 1; 4; -7\right\}$
a/
Với $n$ nguyên, để $\frac{-18}{n}$ là số nguyên thì $n$ là ước của $-18$
$\Rightarrow n\in \left\{\pm 1; \pm 2; \pm 3; \pm 6; \pm 9; \pm 18\right\}$
b.
Với $n$ nguyên, để $\frac{n+7}{3n-1}$ nguyên thì:
$n+7\vdots 3n-1$
$\Rightarrow 3(n+7)\vdots 3n-1$
$\Rightarrow (3n-1)+22\vdots 3n-1$
$\Rightarrow 22\vdots 3n-1$
$\Rightarrow 3n-1\in\left\{\pm 1; \pm 2; \pm 11; \pm 22\right\}$
$\Rightarrow n\in \left\{\frac{2}{3}; 0; 1; \frac{-1}{3}; 4; \frac{-10}{3}; \frac{23}{3}; -7\right\}$
Do $n$ nguyên nên $n\in\left\{0; 1; 4; -7\right\}$
3n+2 chia hết cho n-1
ta có: 3n+2=3n-3+5=3(n-1)+5
Vì n-1 chia hết cho n-1
suy ra 5 chia hết cho n-1
suy ra n-1 thuộc bội của 5 =1,-1,5,-5
Rồi bạn tự giải ra từng trường hợp nhé !
a/ \(n+2⋮n+1\)
\(\left(n+1\right)+1⋮n+1\)
Vì \(n+1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\orbr{\begin{cases}n+1=1\\n+1=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=-2\end{cases}}}\)
b/ \(3n+2⋮n-1\)
\(3n-3+5⋮n-1\)
\(3\left(n-1\right)+5⋮n-1\)
Vì \(3\left(n-1\right)⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\orbr{\begin{cases}n-1=1\\n-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=0\end{cases}}}\)
\(\orbr{\begin{cases}n-1=5\\n-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}n=6\\n=-4\end{cases}}}\)
Vậy \(n\in\left\{2;0;6;-4\right\}\)
c/ 2n - 1 là ước của 3n + 2
\(\Rightarrow3n+2⋮2n-1\)
\(\Rightarrow6n+4⋮2n-1\)
\(\Rightarrow6n-3+7⋮2n-1\)
\(\Rightarrow3\left(2n-1\right)+7⋮2n-1\)
Vì \(3\left(2n-1\right)⋮2n-1\)
\(\Rightarrow7⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\orbr{\begin{cases}2n-1=1\\2n-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}2n=2\\2n=0\end{cases}\Rightarrow}\orbr{\begin{cases}n=1\\n=0\end{cases}}}\)
\(\orbr{\begin{cases}2n-1=7\\2n-1=-7\end{cases}\Rightarrow\orbr{\begin{cases}2n=8\\2n=-6\end{cases}\Rightarrow}\orbr{\begin{cases}n=4\\n=-3\end{cases}}}\)
Vậy \(n\in\left\{1;0;4;-3\right\}\)
hok tốt!!
a)Để n+3/n-2 thuộc Z
=>n+3 chia hết n-2
=>n-2+5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {3;1;7;-3}
a)Để \(\frac{\text{n+3}}{\text{n-2}}\) \(\in\) Z
=> n+3 chia hết n-2
=> (n-2) +5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
Ta có:
n -2 | 1 | -1 | -5 | 5 |
n | 3 | 1 | -3 | 7 |
a, Ư(7) = { -7; -1; 1; 7}
Lập bảng ta có:
a +2 | -7 | -1 | 1 | 7 |
a | -9 | -3 | -1 | 5 |
Theo bảng trên ta có:
\(a\) \(\in\) { -9; -3; -1; 5}
b, 2a + 1 \(\in\) Ư(12)
Ư(12) = { -12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
lập bảng ta có:
2a+1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
a
|
-11/2 loại |
-7/2 loại |
-5/2 loại |
-2 nhận |
-3/2 loại |
-1 nhận |
0 nhận |
1/2 loại |
1 nhận |
3/2 loại |
5/2 loại |
11/2 loại |
Theo bảng trên ta có các giá trị nguyên của a thỏa mãn đề bài là:
a \(\in\) {- 2; - 1; 0; 1}
n + 5 \(⋮\) n - 2
n - 2 + 7 ⋮ n - 2
7 ⋮ n -2
Ư(7) ={ -7; -1; 1; 7}
Lập bảng ta có:
n - 2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 3 | 9 |
Theo bảng trên ta có:
n \(\in\) { -5; 1; 3; 9}
a)Ta có:\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)
=> Để \(1+\frac{5}{n-2}\) là số nguyên âm
=>\(\frac{5}{n-2}\) là số âm và \(\frac{5}{n-2}>-1\)
\(\Rightarrow n-2=-5\)
\(\Rightarrow n=-5-2\)
\(\Rightarrow n=-3\)
NE 25361836+749269263-23813+3016301730`7273-1720`971`08`029383-17291721`+18`027 CO AI BIET KO
\(C=\frac{3n^2+1}{n+2}=\frac{3n^2-12+13}{n+2}=\frac{3\left(n^2-4\right)+13}{n+2}=\frac{3\left(n-2\right)\left(n+2\right)+13}{n+2}\)
\(=3\left(n-2\right)+\frac{13}{n+2}\)
\(C\inℤ\Leftrightarrow n+2\inƯ\left(13\right)=\left\{1;13;-1;-13\right\}\)
=> \(n\in\left\{-1;11;-3;-15\right\}\)