Cho \(\Delta ABC\) vuông tại A , \(AH\perp BC\) tại H . Trên đường thẳng vuông góc với BC tại B lấy D sao cho BD = AH ( A và D không cùng 1 nửa mặt phẳng bờ BC )
a, CMR : \(\Delta AHB=\Delta DBH\)
b, CMR : AB // DH
c, tính \(\widehat{ACB}\) biết \(\widehat{BAH}=35\) độ
Mình cung dinh hoi the
a: Xét ΔAHB vuông tại H và ΔDBH vuông tại B có
BH chung
BA=HD
Do đó: ΔAHB=ΔDBH
b: Xét tứ giác AHDB có
AH//DB
AH=DB
Do đó: AHDB là hình bình hành
Suy ra: AB//DH
c: \(\widehat{ACB}=\widehat{BAH}=35^0\)