K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2017

Ta có :

\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}\)

\(\Leftrightarrow5\left(y^2-x^2\right)=3\left(x^2+y^2\right)\)

\(\Leftrightarrow5y^2-5x^2=3x^2+3y^2\)

\(\Leftrightarrow5y^2-3y^2=3x^2+5x^2\)

\(\Leftrightarrow2y^2=8x^2\)

\(\Leftrightarrow y^2=4x^2\)

\(\Leftrightarrow y^{10}=1024.x^{10}\)

Lại có : \(x^{10}.y^{10}=1024\)

\(\Leftrightarrow x^{10}.x^{10}.1024=1024\)

\(\Leftrightarrow x^{20}.1024=1024\)

\(\Leftrightarrow x^{20}=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

+) Với \(x=1\) \(\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

+) Với \(x=-1\) \(\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy ..

7 tháng 12 2017

\(x^{10}.y^{10}=1024\Leftrightarrow x^2.y^2=4\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}=\dfrac{y^2-x^2+x^2+y^2}{3+5}=\dfrac{2y^2}{8}=\dfrac{y^2}{4}\)(1)

\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}=\dfrac{x^2+y^2-y^2+x^2}{5-3}=\dfrac{2x^2}{2}=\dfrac{x^2}{1}\)(2)

Từ (1) và (2) ta có: \(\dfrac{y^2}{4}=\dfrac{x^2}{1}\)

Lúc này bạn có: \(\left\{{}\begin{matrix}x^2y^2=4\\\dfrac{y^2}{4}=\dfrac{x^2}{1}\end{matrix}\right.\) dễ dàng tìm được nghiệm của phương trình