K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2021

5 tháng 1 2022

Câu hỏi đâu ạ

5 tháng 1 2022

.?.

12 tháng 3 2023

mở bài là giới thiệu về cụ nha mn em viết lộn ạ 

thân bài là đóng góp ạ 

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

b: AC=12cm

AH=7,2cm

Xét ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/9=CD/15

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{9}=\dfrac{CD}{15}=\dfrac{AD+CD}{9+15}=\dfrac{12}{24}=\dfrac{1}{2}\)

Do đó: AD=4,5cm; CD=7,5cm

Câu 6:

a: =12x^2+4x-3x-1-5x^2+15x-x^2+7x-12

=6x^2+23x-13

b: =5x^2+5x-2x-2-3x^3+3x^2+9x-2x(x^2-9x+20)

=-3x^3+8x^2+14x-2-2x^3+18x^2-40x

=-5x^3+26x^2-26x-2

24 tháng 10 2021

Bài 3:

1, Áp dụng t/c dtsbn:

\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{z-x}{3-6}=\dfrac{-21}{-3}=7\\ \Rightarrow\left\{{}\begin{matrix}x=42\\y=28\\z=21\end{matrix}\right.\)

2, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x+3y-z}{6+15-7}=\dfrac{-14}{14}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-7\end{matrix}\right.\)

24 tháng 10 2021

Bài 4: 

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+y+z}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}=\dfrac{130}{\dfrac{13}{12}}=120\)

Do đó: x=60; y=40; z=30

a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)

Xét ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/9=CD/15

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{9}=\dfrac{CD}{15}=\dfrac{AD+CD}{9+15}=\dfrac{12}{24}=\dfrac{1}{2}\)

Do đó: AD=4,5(cm); CD=7,5(cm)

b: Xét ΔABC có DE//AB

nên DE/AB=CD/CA

=>DE/9=7,5/12

=>DE/9=5/8

hay DE=45/8(cm)

27 tháng 2 2022

Xét tam giác MNP có MP là đường phân giác của \(\widehat{MNP}\) ta có:

\(\dfrac{MN}{NP}=\dfrac{MF}{FP}\Leftrightarrow\dfrac{MN}{NP}=\dfrac{MF}{MP-MF}\Leftrightarrow\dfrac{6}{10}=\dfrac{MF}{8-MF}\Rightarrow MF=3\left(cm\right)\)\(\Rightarrow FP=8-3=5\left(cm\right)\)

Xét tam giác MNP có ME là đường cao ứng với cạnh huyền, ta có: \(\dfrac{1}{ME^2}=\dfrac{1}{MN^2}+\dfrac{1}{MP^2}\Leftrightarrow\dfrac{1}{ME^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}\Rightarrow ME=4,8\left(cm\right)\)