Cho \(a,b,c,d\) (khác 0) và \(\frac{a}{b+c+d}\) = \(\frac{b}{c+d+a}\) = \(\frac{c}{a+b+d}\) = \(\frac{d}{a+b+c}\).Giá trị biểu thức A = \(\frac{a+c}{b+d}\) + \(\frac{a+b}{c+d}\) + \(\frac{a+c}{b+d}\) + \(\frac{b+c}{a+d}\) là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)
\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}\)\(=\frac{a+b+c+d}{a+b+c}\)
Do a + b + c + d khác 0 nên: b+c+d = a+c+d = a+b+d = a+b+c => a = b = c = d
\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)\(\left(a=b=c=d\right)\)
\(\Rightarrow A=1+1+1+1=4\)
Bạn tham khảo câu hỏi tương tự.
Câu hỏi của Đào Thị Lan Nhi - Toán lớp 7 - Học trực tuyến OLM
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{b+c+d+c+d+a+a+b+d+a+b+c}=\frac{\left(a+b+c+d\right)}{3\left(a+b+c+d\right)}=3\rightarrow a=b=c=d\rightarrow\frac{a+c}{b+d}+\frac{a+b}{c+d}+\frac{a+c}{b+d}+\frac{b+c}{a+d}=1+1+1+1=4\)
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\)\(\frac{d}{a+b+c}\)
\(\Rightarrow1+\frac{a}{b+c+d}=1+\frac{b}{a+c+d}=1+\frac{c}{a+b+d}=1+\frac{d}{a+b+c}\)
\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)
Mà: \(a+b+c+d\ne0\Rightarrow b+c+d=a+c+d=a+b+d=a+b+c\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)
\(\Rightarrow A=1+1+1+1=4\)
số đo slaf
4
nhe sbn
bài dài
lắm mình
vhir tiện ghi
thế này thôi
cong tat ca lai ta co
a/b+c+d=b/c+d+a=c/a+b+d=d/a+b+c
=>a+b+c/3(a+b+c)
tom lai ket qua la 4
=>\(\frac{a}{d+b+c}\)+1=\(\frac{b}{c+a+d}\)+1=\(\frac{c}{a+b+d}\)+1=\(\frac{d}{a+b+c}\)+1
=>\(\frac{a+b+c+d}{b+c+d}\)=\(\frac{b+a+c+d}{a+c+d}\)=\(\frac{c+a+b+d}{a+b+d}\)=\(\frac{a+b+c+d}{a+b+c}\)
=>b+c+d=a+c+d=a+b+d=a+b+c
=>a=b=c=d
=>\(\frac{a+b}{c+d}\)=\(\frac{b+c}{a+d}\)=\(\frac{c+d}{a+b}\)=\(\frac{d+a}{b+c}\)=1
=>\(\frac{a+b}{c+d}\)=\(\frac{b+c}{a+d}\)=\(\frac{c+d}{a+b}\)=\(\frac{d+a}{b+c}\)=1+1+1+1=4