Chứng minh 1,\(x^4+5>x^2+4x\)
2, Nếu \(a\ge4,b\ge5,c\ge6,a^2+b^2+c^2=90\Rightarrow a+b+c\ge16\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \((a,b,c)=(m+4,n+5,p+6)\Rightarrow m,n,p\geq 0\)
Điều kiện đb trở thành:
\(a^2+b^2+c^2=90\Leftrightarrow m^2+n^2+p^2+8m+10n+12p=13\)
Vì \(m,n,p\geq 0\) nên:
\(13=m^2+n^2+p^2+8m+10n+12p\leq (m+n+p)^2+12(m+n+p)\)
\(\Leftrightarrow (m+n+p+13)(m+n+p-1)\geq 0\)
\(\Rightarrow m+n+p\geq 1\)
\(\Rightarrow a+b+c=m+n+p+15\geq 16\)
Ta có đpcm
Dấu bằng xảy ra khi \((a,b,c)=(4,5,7)\)
\(Taco:\)
\(Đặt:S=a^2+b^2+c^2\)
\(.Với:a=4;b=5;c=6\Rightarrow S=76< 90\)
\(Taco:4+5+6=15\)
\(mà:a=4;b=5;c=6.S< 90\Rightarrow\)ít nhất a>4 hoặc: b>5 hoặc: c>6
Vì: a2;b2,c2 E N=> a,b,c E N
=> \(a+b+c\inℕ\Rightarrow a+b+c>15\Rightarrow a+b+c\ge16\left(đpcm\right)\)
Từ giả thiết ta suy ra
(a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\(\le\)0
⇔a2+b2+c2−13(a+b+c)+118≤0⇔a2+b2+c2−13(a+b+c)+118≤0
⇔a+b+c≥16
Dấu "=" xảy ra khi a=4,b=5,c=6
\(\left\{{}\begin{matrix}a\ge4\\b\ge5\end{matrix}\right.\) \(\Rightarrow a^2+b^2\ge16+25=41\Rightarrow c^2=90-\left(a^2+b^2\right)\le49\Rightarrow c\le7\)
Tương tự: \(b=\sqrt{90-\left(a^2+c^2\right)}\le\sqrt{90-\left(4^2+6^2\right)}=\sqrt{38}\)
\(a\le\sqrt{90-\left(5^2+6^2\right)}=\sqrt{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)\left(a-9\right)\le0\\\left(b-5\right)\left(b-8\right)\le0\\\left(c-6\right)\left(c-7\right)\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}13a\ge a^2+36\\13b\ge b^2+40\\13c\ge c^2+42\end{matrix}\right.\)
\(\Rightarrow13\left(a+b+c\right)\ge a^2+b^2+c^2+118=208\)
\(\Rightarrow a+b+c\ge16\)
\(P_{min}=16\) khi \(\left(a;b;c\right)=\left(4;5;7\right)\)
3
Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+2a\left(b+c\right)+\left(b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\text{Đ}PCM\)
2b)
Ta có: \(x^2+y^2-4x-2y+5=0\Leftrightarrow x^2+y^2-4x-2y+4+1=0\Leftrightarrow\left(x-2\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)
c) \(x^4-11x^2+4x-21=0\Leftrightarrow x^4-10x^2+25-x^2+4x-4=0\)
\(\Leftrightarrow\left(x^2-5\right)^2-\left(x-2\right)^2=0\Leftrightarrow\left(x^2-x-5+2\right)\left(x^2+x-5-2\right)=0\)
đến đây tự làm
Bài 1 :
(a^2+b^2)(x^2+y^2)=(ax+by)^2
<=> a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2 = a^2x^2 + 2abxy + b^2y^2
<=> a^2y^2 + b^2x^2 = 2abxy
<=> a^2y^2 + b^2x^2 - 2abxy = 0
<=> (ay - bx)^2 = 0
=> ay - bx = 0
=> ay = bx
=> a/x = b/y ( x,y khác 0)
1/ \(x^4+5>x^2+4x\)
\(\Leftrightarrow x^4-2x^2+1+x^2-4x+4>0\)
\(\Leftrightarrow\left(x^2-1\right)^2+\left(x-2\right)^2>0\) đúng vì đấu = không xảy ra
2/ Ta có:
\(a=\sqrt{90-b^2-c^2}\le\sqrt{90-5^2-6^2}< 6\)
Tương tự: \(\left\{{}\begin{matrix}b< 7\\c\le7\end{matrix}\right.\)
\(\Rightarrow\left(a-4\right)\left(a-9\right)+\left(b-5\right)\left(b-8\right)+\left(c-6\right)\left(c-7\right)\le0\)
\(\Leftrightarrow a^2+b^2+c^2-13\left(a+b+c\right)+118\le0\)
\(\Leftrightarrow a+b+c\ge16\)