K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

a, HS tự chứng minh

b, Ta chứng minh được tứ giác BCEN là hình bình hành => BC = EN

Do BCDE là hình bình hành

=> BC = ED; DE = EN

=> BA ⊥ EN => BABC

=> BC là tiếp tuyến

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó:ΔACB vuông tại C

=>\(\widehat{ACB}=90^0\)

Ta có: ΔOAC cân tại O(OA=OC)

mà OH là đường trung tuyến

nên OH\(\perp\)AC và OH là tia phân giác của góc AOC

Ta có: OH\(\perp\)AC(cmt)

AC\(\perp\)CB tại C(Do ΔACB vuông tại C)

Do đó: OH//BC

b:

OH là phân giác của góc AOC

=>\(\widehat{AOH}=\widehat{COH}\)

mà M\(\in\)OH

nên \(\widehat{AOM}=\widehat{COM}\)

Xét ΔOCM và ΔOAM có

OC=OA

\(\widehat{COM}=\widehat{AOM}\)

OM chung

Do đó: ΔOCM=ΔOAM

=>\(\widehat{OCM}=\widehat{OAM}\)

mà \(\widehat{OCM}=90^0\)

nên \(\widehat{OAM}=90^0\)

=>OA\(\perp\)MA tại A

=>MA là tiếp tuyến tại A của (O)

28 tháng 4 2023

Xét (O'): \(O'A\perp AB\) tại A và O'A là bán kính.

\(\Rightarrow\)AB là tiếp tuyến của (O') tại A.

\(\Rightarrow\widehat{NAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung AN.

Mặt khác \(\widehat{AMN}\) là góc nội tiếp chắn cung AN.

\(\Rightarrow\widehat{AMN}=\widehat{NAB}\left(1\right)\)

Xét (O): \(\widehat{AMC}=\widehat{ABC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\widehat{NAB}=\widehat{ABC}\) nên AN//BC.

a: Sửa đề: cắt tiếp tuyến tại A của đường tròn ở C

ΔOAB cân tại O

mà OC là đường cao

nên OC là phân giác của góc AOB

Xét ΔOAC và ΔOBC có

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)

OC chung

Do đó: ΔOAC=ΔOBC

=>\(\widehat{OAC}=\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

b:ΔOAC=ΔOBC

=>CB=CA

=>C nằm trên đường trung trực của AB(1)

OA=OB

=>O nằm trên đường trung trực của AB(2)

từ (1) và (2) suy ra OC là đường trung trực của BA

=>OC\(\perp\)AB

mà OC//AD

nên AB\(\perp\)AD

=>ΔABD vuông tại A

Ta có: ΔABD vuông tại A

=>ΔABD nội tiếp đường tròn đường kính DB

mà ΔABD nội tiếp (O)

nên O là trung điểm của DB

=>D,O,B thẳng hàng

Xét ΔAKD vuông tại K và ΔCAO vuông tại A có

\(\widehat{ADK}=\widehat{COA}\)(hai góc so le trong, AD//CO)

Do đó: ΔAKD\(\sim\)ΔCAO

 

7 tháng 9 2018

Tiếp tuyến MN, tiếp điểm K. Vì AB//MN

Nên OH ⊥ AB. Tính được OH = 3 5 R. Từ đó tính được KN = 4 3 R => S O M N = 4 3 R 2