K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

Có làm mới có ăn

23 tháng 12 2020

đúng

 

xét tan giác ABH và ACH

AB=AC (gt)

BH=BC (gt)

AH là cạnh chung

vây tam giác ABH=ACH (c.c.c)

vậy goc AHB=AHC (2 góc tương ứng)

vì AHB+AHC=180 (kề bù)

Mà AHB=AHC

vậy AHB=AHC=180:2=90

vậy AH vuông góc với BC

vi CB vuông góc Cx (gt)

AH vuông góc BC (cmt)

vậy Cx//AH

tam giác vuông EBC có E+B=90

tam giác vuông AHB có BAH+ B=90

Vậy BAH=BEC hay BAH=AEC

2 tháng 1 2018

a)   Xét  \(\Delta ABD\)và   \(\Delta EBD\)có:

         \(AB=EB\)  (gt)

         \(\widehat{ABD}=\widehat{EBD}\)   (gt)

        \(BD\)   cạnh chung

suy ra:   \(\Delta ABD=\Delta EBD\) (c.g.c)

b)  \(\Delta ABD=\Delta EBD\) \(\Rightarrow\)\(AD=ED\)(2 cạnh tương ứng);    \(\widehat{BAD}=\widehat{BED}=90^0\)(2 góc tương ứng)

Xét 2 tam giác vuông:  \(\Delta DAM\)và  \(\Delta DEC\)có:

                      \(DA=DE\) (cmt)

                      \(\widehat{ADM}=\widehat{EDC}\)  (dd)

suy ra:   \(\Delta DAM=\Delta DEC\)    (cạnh góc vuông - góc nhọn kề cạnh ấy)

\(\Rightarrow\)\(AM=EC\)(2 cạnh tương ứng)

c)   \(\Delta DAE\)  cân tại D   (do  DA = DE) 

\(\Rightarrow\)\(\widehat{DAE}=\widehat{DEA}\)

mà  \(\widehat{DAM}=\widehat{DEC}\)   ( \(=90^0\))

suy ra:   \(\widehat{DAE}+\widehat{DAM}=\widehat{DEA}+\widehat{DEC}\)

hay  \(\widehat{MAE}=\widehat{AEC}\)   (đpcm)

2 tháng 1 2018

a) Xét tam giác ABD và EBD có :

BA = BE;

Cạnh BD chung

\(\widehat{ABD}=\widehat{EBD}\)

\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)

b) Do \(\Delta ABD=\Delta EBD\Rightarrow AD=ED;\widehat{BAD}=\widehat{BED}=90^o\)

nên \(\widehat{DAM}=\widehat{DEC}\)

Vậy thì \(\Delta ABM=\Delta EDC\left(g-c-g\right)\)

\(\Rightarrow AM=EC\)

c) Ta có DA = DE nên \(\widehat{DAE}=\widehat{DEA}\)

Vậy nên \(\widehat{AEC}=\widehat{DEC}+\widehat{AED}=\widehat{DAM}+EAD=\widehat{EAM}\)