Tìm giá trị lớn nhất của biểu thức: A= | x | - | x - 2 |
nhanh nha mai nộp rồi mn ơi !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: |a| - |b| \(\le\) |a - b|
Do đó: |x - 1004| - |x + 1003| \(\le\) |x - 1004 - x - 1003|
\(\le\) 2007
Vậy GTLN của A là 2007 khi x = -1013
Ta có: |a| - |b| \(\le\) |a - b|
Do đó: A = |x - 1004| - |x + 1003| \(\le\)|x - 1004 - x - 1003|
\(\le\) 2007
Vậy GTLN A = 2007 khi x = -1013
Với mọi x thì A= |x+5/8 | \(\ge\)0 .
Dấu ''='' xảy ra khi và chỉ khi x+5/8= o \(\Leftrightarrow\)x= -5/8.
Vậy GTNN (A)= 0 khi x= -5/8.
Ta có:
\(A=\left|x+\frac{5}{8}\right|\ge0\)
Dấu "=" xảy ra khi và chỉ khi x = -5/8
Vậy Min A = 0 khi và chỉ khi x = -5/8
\(M=x^2+x+10\)
\(=x^2+x+\frac{1}{4}+\frac{39}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\)
Vậy \(M_{min}=\frac{39}{4}\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
\(M=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{39}{4}\)
\(M=\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\ge0\)
\(\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\)\(\Rightarrow M\ge\frac{39}{4}\)
Dấu "=" xảy ra: \(\left(x+\frac{1}{2}\right)^2=0\)
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
Bmax khi (x-6)^2 +3 = 3
<=>(x-6)^2 = 0
=>x-6 = 0
=>x = 6
lúc đó B=1/3
vậy Bmax=1/3 khi x=6
nếu thấy sai thi bạn kiểm tra hộ mình cái đề nha!!!(^_^)