Tìm số có 2 chữ số biết :
a, tổng của số đó và số viết theo thứ tự ngược lại là số chính phương ;
b, Hiệu bình phương của số đó và số viết theo thứ tự ngược lại là SCP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab (a khác 0; a,b < 10)
ta có:ab + ba = 10a + b + 10b + aq = 11a + 11b = 11(a + b)
Vì a + b là số chính phương nên a + b chia hết cho 11.
mà 1\(\le\) a<10
0\(\le\) b<10
=> 1\(\le\) a+b<20
=>a+b=11
ta có bảng sau:
\(<table border="1" cellspacing="1" cellpadding="1" style="width:500px"><tbody><tr><td>a</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td></tr><tr><td>b</td><td>9</td><td>8</td><td>7</td><td>6</td><td>5</td><td>4</td><td>3</td><td>2</td></tr></tbody></table>\)
=> có 8 số thỏa mãn đề a
Bài 1: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$
Theo bài ra ta có:
$\overline{ab}-\overline{ba}=10a+b-(10b+a)=9(a-b)$ là 1 scp.
Mà $9$ cũng là 1 scp nên để $9(a-b)$ là scp thì $a-b$ là scp.
$a,b$ là các số tự nhiên có 1 chữ số nên $a-b<10$
$\Rightarrow a-b\in\left\{0,1,4,9\right\}$
Nếu $a-b=0$ thì $a=b$. Ta có các số $11,22,33,44,55,....,99$ đều thỏa mãn.
Nếu $a-b=1$ thì $a=b+1$. Ta có các số $10, 21,32,43,54,65,76,87,98$ đều thỏa mãn.
Nếu $a-b=4$ thì $a=b+4$. Ta có các số $40, 51, 62, 73, 84, 95$ đều thỏa mãn
Nếu $a-b=9$ thì $a=b+9$. Ta có số $90$ thỏa mãn.
Bài 2: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$.
Theo bài ra ta có:
$\overline{ab}+\overline{ba}=10a+b+10b+a=11(a+b)$
Để tổng này là scp thì $a+b=11m^2$ với $m$ là số tự nhiên.
$\Rightarrow a+b\vdots 11$.
Mà $a,b$ là số tự nhiên có 1 chữ số nên $a+b< 20$
$\Rightarrow a+b=11$
$\Rightarrow (a,b)=(2,9), (3,8), (4,7), (5,6), (6,5), (7,4), (8,3), (9,2)$
Vậy số thỏa mãn là $29,38,47,56,65,74,83,92$
làm nhanh qua
theo đề ta coá: ab+ba=k2
=>11a+11b=k2
=>11.(a+b)=k2
=>a+b=11 thì 11(a+b) mới là số chính phương
=>các số cần tìm: 29;38;47;56;65;74;83;92
Gọi số cần tìm thứ 1 là a, số thứ 2 là b (đk 10>a,b>0)
Ta có: ab+ba
hay 10a+b+10b+a
=11a+11b=11(a+b)
Vì a+b là số chinh phương
\(\Rightarrow a+b⋮11\)
mà 10>a,b>0
\(\Rightarrow1\le a,b< 20\)
\(\Rightarrow a+b=11\)
Ta có bảng sau:
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
Vậy các cặp số (a;b) thỏa mãn đề bài là (2;9);(3;8);(4;7);(5;6);(6;5);(7;4);(8;3);(9;2)
Số cần tìm là 21 vì:
21 viết theo thứ tự ngược lại là 12
mà 21 - 12 = 9 (9 là số chính phương)