K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

Chứng minh rằng $4(\sqrt{^{a^3b^3}}+\sqrt{^{b^3c^3}}+\sqrt{^{c^3a^3}})\leq 4c^3+^{(a+b)^3}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

15 tháng 11 2017

co ban thi la vay :)) con cach khac de sau :))

19 tháng 5 2021

Thầy Nguyễn Việt Lâm ơi! Em nghị giờ đi theo con đường là chỉ cần cm đc

2ab(a+b) + 2bc(b+c) + 2ac(a+c) bé thua hoặc bằng 4c^3 + (a+b)^3 

Rồi sử dụng cái tích chất bắc cầu k biết có đc không nữa.

NV
19 tháng 5 2021

Đơn giản là phân tích bình phương thôi, để loại căn cho dễ nhìn, đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\)

\(\left(x^2+y^2\right)^3+4z^6\ge4x^3y^3+4y^3z^3+4z^3x^3\)

\(\Leftrightarrow x^6+y^6+3x^4y^2+3x^2y^4+4z^6-4x^3y^3-4y^3z^3-4z^3x^3\ge0\)

\(\Leftrightarrow\left(x^6+y^6+4z^6+2x^3y^3-4z^3x^3-4y^3z^3\right)+3\left(x^4y^2-2x^3y^3+x^2y^4\right)\ge0\)

\(\Leftrightarrow\left(x^3+y^3-2z^3\right)^2+3\left(x^2y-xy^2\right)^2\ge0\) (luôn đúng)

2 tháng 8 2020

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(x,y,z>0\)và ta cần chứng minh \(\frac{x}{\sqrt{3zx+yz}}+\frac{y}{\sqrt{3xy+zx}}+\frac{z}{\sqrt{3yz+xy}}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có: \(\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}}\)

Áp dụng BĐT Cauchy-Schwarz, ta có: \(x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}\)\(=\sqrt{x}.\sqrt{3zx^2+xyz}+\sqrt{y}.\sqrt{3xy^2+xyz}+\sqrt{y}.\sqrt{3yz^2+xyz}\)\(\le\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\)

Ta cần chứng minh \(\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\le\frac{2}{3}\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)^4\ge\frac{9}{4}\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]\)

\(\Leftrightarrow\left(x+y+z\right)^3\ge\frac{27}{4}\left(xy^2+yz^2+zx^2+xyz\right)\)(*)

Không mất tính tổng quát, giả sử \(y=mid\left\{x,y,z\right\}\)thì khi đó \(\left(y-x\right)\left(y-z\right)\le0\Leftrightarrow y^2+zx\le xy+yz\)

\(\Leftrightarrow xy^2+zx^2\le x^2y+xyz\Leftrightarrow xy^2+yz^2+zx^2+xyz\le\)\(x^2y+yz^2+2xyz=y\left(z+x\right)^2=4y.\frac{z+x}{2}.\frac{z+x}{2}\)

\(\le\frac{4}{27}\left(y+\frac{z+x}{2}+\frac{z+x}{2}\right)^3=\frac{4\left(x+y+z\right)^3}{27}\)

Như vậy (*) đúng

Đẳng thức xảy ra khi a = b = c

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

20 tháng 1 2019

Bất đẳng thức mang tính hoán vị của các biến nên không mất tính tổng quát,giả sử a là số lớn nhất trong các số:a,b,c

Với \(a\ge b\ge c\)thì VP âm trong khi đó VT luôn dương nên bất đẳng thức luôn đúng.

\(\Rightarrow a\ge c\ge b\)

Biến đổi biểu thức tương đương:

\(\left(a+b+c\right)^6\ge108\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2\)

Mặt khác:

\(\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2=\left[\left(a-b\right)\left(c-b\right)\left(a-c\right)\right]^2\le\left(a-c\right)^2\cdot a^2\cdot c^2\)

Áp dụng bất đẳng thức AM-GM,ta được:

\(4\left(a-c\right)^2\cdot c^2\cdot a^2=2ac\cdot2ac\left(a-c\right)^2\le\frac{\left[\left(a-c\right)^2+2ac+2ac\right]^3}{27}=\frac{\left(a-c\right)^6}{27}\)

\(\Rightarrow\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2\le\frac{\left(a+c\right)^2}{108}\)

\(\Rightarrow\left(a+b+c\right)^6\ge\left(a+c\right)^6\ge108\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2\)

\(\Rightarrow\left(a+b+c\right)^3\ge6\sqrt{3}\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Bất đẳng thức được chứng minh.

7 tháng 5 2022

???????????????loằng ngoằng quá. Tui không hỉu cái GTNN

8 tháng 5 2022

GTNN là tắt của giá trị nhỏ nhất, 

Trong bài này bạn biến đổi sao cho biểu thức \(P\ge a\)   (số a là số biết trước) 

VD: Bạn đưa về dạng nào đó của biểu thức mà nó luôn lớn hơn hoặc bằng \(\dfrac{1}{3}\) Bạn có thể viết \(P\ge\dfrac{1}{3}\) thì GTNN của \(P=\dfrac{1}{3}\)  hay \(minP=\dfrac{1}{3}\)

Tìm được GTNN rồi thì bạn tìm ẩn để dấu "=" xảy ra, nghĩa là để BĐT xảy ra dấu =, lúc đó biểu thức P đạt giá trị nhỏ nhất,

 VD như: \(minP=\dfrac{1}{3}\) <=> Dấu = xảy ra

                                  <=> x = b (x là ẩn và b là biết trước)

Ở một số bài có thể cho điều kiện của ẩn.

13 tháng 8 2020

\(VP=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)

\(=\frac{6}{\sqrt{\left[\left(a+b+c\right)a+bc\right]\left[\left(a+b+c\right)b+ca\right]\left[\left(a+b+c\right)c+ab\right]}}\)

\(=\frac{6}{\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+1\right)^2}}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

\(VT=\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}\)

\(=\frac{1}{\left(a+b+c\right)a+bc}+\frac{1}{\left(a+b+c\right)b+ac}+\frac{1}{\left(a+b+c\right)c+ab}\)

\(=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

Vậy VT = VP, đẳng thức được chứng minh

NV
13 tháng 1

Biểu thức này có vẻ chỉ tìm được min chứ ko tìm được max:

Min:

\(P^2=a+b+c+a^3b^3+b^3c^3+c^3a^3+2\sqrt{\left(a+b^3c^3\right)\left(b+c^3a^3\right)}+2\sqrt{\left(a+b^3c^3\right)\left(c+a^3b^3\right)}+2\sqrt{\left(b+c^3a^3\right)\left(c+a^3b^3\right)}\)

\(P^2\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\ge a+b+c=2\)

\(\Rightarrow P\ge\sqrt{2}\)

\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(0;0;2\right)\) và các hoán vị

23 tháng 2 2022

Đặt \(x=a^3;y=b^3;z=c^3\), khi đó \(xyz=1\). Bất đẳng thức cần chứng minh trở thành:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(2+xy+yz+zx+x+y+z\right)}\)

Ta viết lại bất đẳng thức như sau:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(2+xy+yz+zx+x+y+z\right)}\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

Bình phương 2 vế ta được:

\(\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\ge8\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

Áp dụng bất đẳng thức Bunhiacopxki ta được \(\left(x+y\right)^2\left(x+\frac{1}{y}\right)^2\ge x+1^4\)hay ta được bất đẳng thức:

\(\left(x+y\right)^2\left(x+xz\right)^2\ge\left(x+1\right)^4\Leftrightarrow x^2\left(x+y\right)^2\left(1+z\right)^2\ge\left(x+1\right)^4\)

Tương tự ta được các bất đẳng thức:

\(y^2\left(y+z\right)^2\left(1+x\right)^2\ge\left(y+1\right)^4;z^2\left(z+x\right)^2\left(1+y\right)^2\ge\left(z+1\right)^4\)

Nhân theo vế các bất đẳng thức trên, ta được:

\(x^2y^2z^2\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\)

\(\ge\left(x+1\right)^4\left(y+1\right)^4\left(z+1\right)^4\)

Hay:

\(\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2\ge\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\)

Mặt khác, ta lại có:

\(\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\ge\left(1+x\right)\left(1+y\right)\left(1+z\right)\cdot8\sqrt{xyz}\)

\(=8\left(1+x\right)\left(1+y\right)\left(1+z\right)\)

Do đó ta được bất đẳng thức:

\(\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\ge8\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

Bất đẳng thức được chứng minh, dấu đẳng thức xảy ra khi \(a=b=c\)

NV
19 tháng 4 2020

\(\frac{a^2}{\sqrt{3a^2+8b^2+12ab+2ab}}\ge\frac{a^2}{\sqrt{3a^2+9b^2+12ab+a^2+b^2}}=\frac{a^2}{\sqrt{\left(2a+3b\right)^2}}=\frac{a^2}{2a+3b}\)

\(\Rightarrow VT\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{1}{5}\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b=c\)