Cho a,b,c là các số không âm thõa mãn a + b + c = 1. CMR : \(b+c\ge16abc\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cô si với hai số không âm, Ta có:
\(\left(a+b+c\right)^2=1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)
Mà \(\left(b+c\right)^2\ge4bc\forall b,c\ge0\)
\(\Rightarrow b+c\ge16abc\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}a+b+c=1\\b=c\\a=b+c\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)
\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)
Áp dụng BĐT Cô si với 2 số dương ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2,\frac{b}{c}+\frac{c}{b}\ge2,\frac{c}{a}+\frac{a}{c}\ge2\)
\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)(đúng)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(do a+b+c=1)
2. Có : 1/x + 1/y + 1/z = 0
=> 1 + x/y + x/z = 0 => x/y + x/z = -1
Tương tự : y/x + y/z = -1 ; z/x + z/y = -1
=> x/y + x/z + y/x + y/z + z/x + z/y = -3
Lại có : 1/x+1/y+1/z = 0
<=> xy+yz+zx/xyz = 0
<=> xy+yz+zx = 0
Xét : 0 = (xy+yz+zx).(1/x^2+1/y^2+1/z^2)
= xy/z^2+xz/y^2+xy/z^2+x/y+y/x+y/z+z/y+z/x+x/z
= xy/z^2+xz/y^2+xy/z^2-3
=> xy/z^2+xz/y^2+xy/z^2 = 3
=> ĐPCM
Tk mk nha
Áp dụng BĐT Cô si ta có:
\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)
Mà \(\left(b+c\right)^2\ge4bc\)
\(\Rightarrow b+c\ge4a.4bc=16abc\)
đặt \(3^{13579}=m\).
Vì (3;13579)=1 nên (13579;m)=1 (*)
đem m+1 số \(13579;13579^2;...;13579^{m+1}\)chia cho m
Theo nguyên lý Dirichle trong m+1 số trên có ít nhất 2 số khi chia cho m có cùng số dư
Gọi 2 số đó là \(13579^x\&13579^y\)(tự đk cho x;y)
giả sử x>y
=>13579^x-13579^y chia hết cho m
=>\(13579^y\left(13579^{x-y}-1\right)\)chia hết cho m
mà 13579^y không chia hết cho m nên 13579^x-y -1 chia hết cho m
=>tồn tại n=x-y thỏa mãn đề bài
Áp dụng BĐT cô-si, ta có
\(\left(a+b+c\right)^2\ge4a\left(b+c\right);\left(b+c\right)^2\ge4bc\)
Nhân từng vế, ta có \(\left(a+b+c\right)^2\left(b+c\right)^2\ge4a\left(b+c\right).4bc\Rightarrow b+c\ge16abc\left(ĐPCM\right)\)
dấu = xảy ra <=>\(\hept{\begin{cases}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{cases}}\)
^_^
Câu trả lời hay nhất: áp dụng BĐT Côsi cho hai số không âm có
1 = (a + b+ c)^2 >= 4a(b + c)
<=> b +c >= 4a(b + c)^2
Mà (b + c)^2 >= 4bc
Vậy b + c >= 4a.4bc = 16abc
p/s:kham khảo
Đặt
x=a+b , y=b+c , z=c+a
=> x+y+z=2
Ta cần chứng minh x+z > 4xyz
Ta có
4(x+z)=(x+y+z)2
(x+z) > 4y.4xz=16xyz
= 4y(x+z)2 > 4y.4xz= 16xyz
=>x+z > 4xyz
Hoàn tất chứng minh . Dấu "=" xảy ra khi x=z=1/2:y=1 thế vào tìm a,b,c.
Chúc bn hok tốt
Ta có BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) (tự c/m)
Áp dụng vào,ta có: \(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)+\left(c+b\right)}\le\frac{ab}{4\left(c+a\right)}+\frac{ab}{4\left(c+b\right)}\) (Làm tắt,ráng hiểu)
Chứng minh tương tự và cộng theo vế:
\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{c}{4}=\frac{a+b+c}{4}=\frac{1}{4}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT AM-GM ta có:
\(b+c\ge2\sqrt{bc}\Rightarrow\left(b+c\right)^2\ge4bc\)
\(a+b+c\ge2\sqrt{a\left(b+c\right)}\Leftrightarrow1\ge4a\left(b+c\right)\)
Nhân theo vế 2 BĐT trên ta có:
\(\left(b+c\right)^2\ge16abc\left(b+c\right)\)\(\Leftrightarrow b+c\ge16abc\)
còn cách khác không Ace Legona