K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

\(\dfrac{10n^2+9n+4}{20n^2+20n+9}\)

Gỉa sử :

\(\left\{{}\begin{matrix}10n^2+9n+4⋮d\\20n^2+20n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20n^2+18n+8⋮d\\20n^2+20n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\10n^2+9n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10n^2+5n⋮d\\10n^2+9n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4n+4⋮d\\10n^2+5n⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4n+4⋮d\\2n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4n+4⋮d\\4n+2⋮d\end{matrix}\right.\)

\(\Leftrightarrow2⋮d\)

Vậy phân số trên chưa tối giản .

14 tháng 11 2017

cái bài này 1 số đề thi huyện ghi là chứng minh tối giản

24 tháng 7 2023

Để \(\dfrac{10n^2+9n+4}{20n^2+20+9}\) tối giản

\(\Rightarrow10n^2+9n+4⋮1;20n^2+20n+9⋮1\left(n\in N\right)\)

\(\Rightarrow2\left(10n^2+9n+4\right)-\left(20n^2+20n+9\right)⋮1\)

\(\Rightarrow20n^2+18n+8-20n^2-20n+9⋮1\)

\(\Rightarrow-2n-1⋮1\) (luôn đúng \(\forall n\in N\))

\(\Rightarrow dpcm\)

24 tháng 7 2023

Chứng minh rằng với mọi số tự nhiên  thì phân số 10�2+9�+420�2+20�+9 tối giản

13 tháng 10 2017

Tiếp theo bài giải của bạn Nguyễn Thanh Hằng

\(2n+1⋮d\\ \Rightarrow5n\left(2n+1\right)⋮d\\ \Rightarrow10n^2+5n⋮d\Rightarrow\left(10n^2+9n+4\right)-\left(10n^2+5n\right)⋮d\\ \Rightarrow4n+4⋮d\Rightarrow4.\left(n+1\right)⋮d\\ \Rightarrow n+1⋮d\)

Vì d lẻ do 2n+1 chia hết cho d

\(\Rightarrow2n+2⋮d\\ \Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\\ \Rightarrow1⋮\left(đpcm\right)\)

12 tháng 10 2017

Gọi \(d=ƯCLN\left(10n^2+9n+4;20n^2+20n+9\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}10n^2+9n+4⋮d\\20n^2+20n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20n^2+18n+8⋮d\\20n^2+20n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow2n+1⋮d\)

đên đây thì bí

NM
1 tháng 3 2021

ta có \(\frac{10n^2+9n+4}{20n^2+20n+9}\) là phân số tối giản khi

\(\left(10n^2+9n+4,20n^2+20n+9\right)=1\)

mà \(\left(20n^2+20n+9\right)-2\left(10n^2+9n+4\right)=2n+1\)

\(\Rightarrow\left(10n^2+9n+4,2n+1\right)=\left(10n^2+9n+4,20n^2+20n+9\right)\)

mà \(\left(10n^2+9n+4\right)-\left(2n+1\right)\left(5n+2\right)=2\)

\(\Rightarrow\left(10n^2+9n+4,2n+1\right)=\left(2n+1,2\right)=1\)

Vậy \(\left(10n^2+9n+4,20n^2+20n+9\right)=1\) hay phân số đã cho là tối giản

1 tháng 3 2021

Gọi \(ƯCLN\left(10n^2+9n+4;20n^2+20n+4\right)=d\)\(\left(d\ge1\right)\)

Ta có : \(\left(10n^2+9n+4\right)⋮d\)và \(\left(20n^2+20n+9\right)⋮d\)

Hay \(\left[2\left(10n^2+9n+4\right)+2n+1\right]⋮d\)

\(\Rightarrow\left(2n+1\right)⋮d\left(1\right)\)

Mặt khác : \(\left(10n^2+9n+4\right)⋮d\Rightarrow\left(10n^2+9n+2\right)+2⋮d\)\(\Rightarrow\left(5n+2\right)\left(2n+1\right)+2⋮d\)\(\)

Vì \(\left(2n+1\right)⋮d\Rightarrow\left(5n+2\right)\left(2n+1\right)⋮d\)

Mà \(\left(5n+2\right)\left(2n+1\right)+2⋮d\)

\(\Rightarrow2⋮d\left(2\right)\)

Từ (1) và (2) 

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\). \(\Rightarrow\) ƯCLN (\(10n^2+9n+4;20n^2+20n+9\)) =1

\(\Rightarrow\)Phân số trên tối giản

\(\)

22 tháng 11 2017

Gọi d là ước chung lớn nhất của \(10n^2+9n+4\)\(20n^2+20n+9\)

\(\Rightarrow10n^2+9n+4⋮d\Rightarrow20n^2+18n+8⋮d\)

cũng có \(20n^2+20n+9⋮d\)

\(\Rightarrow20n^2+20n+9-\left(20n^2+18n+8\right)⋮d\)

\(\Rightarrow n+1⋮d\)

\(\Rightarrow n+1+10n^2+9n+4⋮d\)

\(\Rightarrow10n^2+10n+5⋮d\)

\(\Rightarrow20n^2+20n+10⋮d\)

\(\Rightarrow20n^2+20n+10-\left(20n^2+20n+9\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Do ƯCLN của tử và mẫu bằng 1 nên phân số này tối giản

9 tháng 11 2016

a)Gọi \(UCLN\left(6n+1;8n+1\right)=d\)

Ta có:

\(\left[4\left(6n+1\right)\right]-\left[3\left(8n+1\right)\right]⋮d\)

\(\Rightarrow\left[24n+4\right]-\left[24n+3\right]⋮d\)

\(\Rightarrow1⋮d\).Suy ra 24n+4 và 24n+3 là 2 số nguyên tố cùng nhau

Vậy \(A=\frac{6n+1}{8n+1}\) là phân số tối giản

b)tương tự

10 tháng 11 2016

tks bn hihahihi

7 tháng 2 2020

Giả sử: \(\left(10n^2+9n+4,20n^2+20n+9\right)=d\)

\(\Rightarrow\left(20n^2+20n+9\right)-2\left(10n^2+9n+4\right)⋮d\)

\(\Rightarrow2n+1⋮d\left(1\right)\)

Ta có: \(10n^2+9n+4=\left(2n+1\right)\left(5n+2\right)+2\)

Mà: \(10n^2+9n+4⋮d\Rightarrow\left(2n+1\right)\left(5n+2\right)+2⋮d\left(2\right)\)

Từ: \(\left(1\right)\left(2\right)\Rightarrow2⋮d\Rightarrow2n⋮d\)

Từ: \(\left(1\right)\left(3\right)\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ......