tính nhanh 1.2+2.3+1.2+3.5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 6B = 2.4.6 + 4.6.(8-2) + 6.8.(10-4) + ... + 18.20.(22-16)
6B = 2.4.6 + 4.6.8 - 2.4.6 + 6.8.10 - 4.6.8 +...+ 18.20.22 - 16.18.20
6B = 18.20.
B = (18.20.22) : 6
B = 1320
Mấy bài kia tương tự, cần giải luôn không bạn? Nhưng hơi mất thời gian
3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)
3C=2014.2015.2016
C=2014.2015.2016:3
B = 1.2+2.3+3.4+...+99.100
B=1.100
B=100
C=1.3+2.4+3.5+4.6+...+9.11
C=1.(2+1)+2.(3+1)+3.(4+1)+4.(5+1)+...+9.(10+1)
C=1.2+1+2.3+1+3.4+1+4.5+1+...+9.10+1
C=(1.2+2.3+3.3+4.5+...+9.10)+(1+1+1+1+..+1)
C=1.10+10
C=10+10
C=20
a) B = 1.2+2.3+3.4+..+99.100
=>3B=1.2.3+2.3.3+3.4.3+...+99.100.3
3B = 1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5-2.3.4+...+99.100.101-98.99.100
3B = (1.2.3+2.3.4+3.4.5+..+99.100.101) - (1.2.3+2.3.4+...+98.99.100)
3B = 99.100.101
\(B=\frac{99.100.101}{3}=333300\)
b) C = 1.3+2.4+3.5+4.6+...+9.11
C = (2-1).(2+1)+(3-1).(3+1) + (4-1).(4+1)+(5-1).(5+1)+...+(10-1).(10+1)
C = 22 - 1 + 32 - 1 + 42 - 1 + 52 - 1 +...+102 - 1
C = (22+32+42+52+...+102) -(1+1+...+1)
...
Đề bài của bạn sai ở chỗ 99.101 nha, phải là 99.100
a) A = 1.2 + 2.3 + 3.4 + ... + 99.100
=>3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3 + 99.100.3
=>3A = 1.2(3-0) + 2.3(4-1) + 3.4(5-2) + ... + 98.99(100 - 97) + 99.100(101 - 98)
=>3A = 1.2.3 - 0.1.2. + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 98.99.100 - 97.98.99 + 99.100.101 - 98.99.100
=> 3A = 0.1.2 + 99.100.101 = 99.100.101
=> A = (99.100.101) : 3
\(A=1\cdot2+2\cdot3+...+151\cdot152\)
\(=1\left(1+1\right)+2\left(1+2\right)+...+151\left(1+151\right)\)
\(=\left(1+2+3+...+151\right)+\left(1^2+2^2+...+151^2\right)\)
\(=\dfrac{151\left(151+1\right)}{2}+\dfrac{151\left(151+1\right)\left(2\cdot151+1\right)}{6}\)
\(=151\cdot76+\dfrac{151\cdot152\cdot303}{6}\)
\(=151\cdot76+151\cdot7676=1170552\)
\(C=2\cdot4+4\cdot6+...+2024\cdot2026\)
\(=2\cdot2\left(1\cdot2+2\cdot3+...+1012\cdot1013\right)\)
\(=4\left[1\left(1+1\right)+2\left(1+2\right)+...+1012\left(1+1012\right)\right]\)
\(=4\left[\left(1+2+...+1012\right)+\left(1^2+2^2+...+1012^2\right)\right]\)
\(=4\left[1012\cdot\dfrac{1013}{2}+\dfrac{1012\left(1012+1\right)\left(2\cdot1012+1\right)}{6}\right]\)
\(=4\left[506\cdot1013+345990150\right]\)
\(=1386010912\)
\(M=1^2+2^2+...+2024^2\)
\(=\dfrac{2024\left(2024+1\right)\cdot\left(2\cdot2024+1\right)}{6}\)
\(=2024\cdot2025\cdot\dfrac{4049}{6}\)
=2765871900
\(N=1^3+2^3+...+100^3\)
\(=\left(1+2+3+...+100\right)^2\)
\(=\left[\dfrac{100\left(100+1\right)}{2}\right]^2\)
\(=\left[50\cdot101\right]^2=5050^2\)
\(Q=1^3+2^3+...+2024^3\)
\(=\left(1+2+3+...+2024\right)^2\)
\(=\left[\dfrac{2024\left(2024+1\right)}{2}\right]^2\)
\(=\left[1012\left(2024+1\right)\right]^2\)
\(=2049300^2\)
a) \(A=2.4+4.6+6.8+...+18.20\)
\(6A=2.4.6+4.6.\left(8-2\right)+6.8.\left(10-4\right)+...+18.20.\left(22-16\right)\)
\(6A=2.4.6+4.6.8-2.4.6+6.8.10-4.6.8+...+18.20.22-16.18.20\)
\(6A=18.20.22\)
\(A=\frac{18.20.22}{6}=\frac{7920}{6}=1320\)
d/ Đặt : A = 1.2 + 2.3 + 3.4 + ......... + 99.100
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... + 99.100.(101 - 98)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101
=> 3A = 99.100.101
=> A = 99.100.101 / 3
=> A = 333300
s = 1-1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5
S=1 + (-1/2 +1/2)+...+(-1/4 + 1/4 ) +-1/5
S = 1 + 0 +0 +...+ 0 +-1/5
S= 1 + -1/5
S = 4/5