Cho P= n4 +4 . Tìm tất cả giá trị của n để P là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) n4 + 4 = (n4 + 4n2 + 4) - 4n2 = (n2 + 2)2 - (2n)2 = (n2 + 2 + 2n).(n2 + 2 - 2n)
Ta có n2 + 2n + 2 = (n+1)2 + 1 > 1 với n là số tự nhiên
n2 - 2n + 2 = (n -1)2 + 1 1 với n là số tự nhiên
Để n4 + 4 là số nguyên tố => thì n4 + 4 chỉ có 2 ước là chính nó và 1
=> n2 + 2n + 2 = n4 + 4 và n2 - 2n + 2 = (n -1)2 + 1 = 1
(n -1)2 + 1 = 1 => n - 1= 0 => n = 1
Vậy n = 1 thì n4 là số nguyên tố
BS đề bài : n thộc N*
P = n4+4 = n4+ 4n2+4 - 4n2
=(n2+2)2-(2n)2
=(n2-2n+2)(n2+2n+2)
Mà n2+2n+2 > n2- 2n+2( vì n thuộc N*)
\(\Rightarrow\)Để P là số nguyên tố thì n2 - 2n+2=1
\(\Rightarrow\)n2 - 2n+1=0
\(\Rightarrow\)(n - 1)2 = 0
\(\Rightarrow\)n - 1 = 0
\(\Rightarrow\)n = 1(thỏa mãn điều kiện trên)
Ta thử lại: Nếu n = 1 thì P = 14 + 4 = 5 là số nguyên tố (chọn)
Vậy n = 1
Câu 1:
a) \(A=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}.\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}\)
\(=\left[\dfrac{2}{3x}-\dfrac{2}{3x}+\dfrac{2x}{x+1}+\dfrac{2}{x+1}\right]\dfrac{x}{x-1}\)
\(=\left[\dfrac{2x}{x+1}+\dfrac{2}{x+1}\right]\dfrac{x}{x-1}\)
\(=\dfrac{2x+2}{x+1}.\dfrac{x}{x-1}\)
\(=\dfrac{2\left(x+1\right)}{x+1}.\dfrac{x}{x-1}\)
\(=2.\dfrac{x}{x-1}\)
\(=\dfrac{2x}{x-1}\)
Câu 1:
ĐKXĐ: \(x\notin\left\{0;-1;1\right\}\)
a) Ta có: \(A=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-x-1\right)\right):\dfrac{x-1}{x}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-\dfrac{3x\left(x+1\right)}{3x}\right)\right):\dfrac{x-1}{x}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right):\dfrac{x-1}{x}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right):\dfrac{x-1}{x}\)
\(=\left(\dfrac{2\left(x+1\right)}{3x\left(x+1\right)}-\dfrac{2\cdot\left(-3x^2-2x+1\right)}{3x\left(x+1\right)}\right):\dfrac{x-1}{x}\)
\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)
\(=\dfrac{6x^2+6x}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)
\(=\dfrac{6x\left(x+1\right)}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)
\(=2\cdot\dfrac{x}{x-1}=\dfrac{2x}{x-1}\)
b) Để A nguyên thì \(2x⋮x-1\)
\(\Leftrightarrow2x-2+2⋮x-1\)
mà \(2x-2⋮x-1\)
nên \(2⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(2\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;3\right\}\)
Vậy: Để A nguyên thì \(x\in\left\{2;3\right\}\)
Khi p = 2 => p + 10 = 12 (loại)
Khi p = 3 => p + 10 = 13 (tm)
p + 14 = 17 (tm)
Khi p > 3 => đặt \(\orbr{\begin{cases}p=3k+1\\p=3q+2\end{cases}}\left(k;q\inℕ^∗\right)\)
Khi p = 3k + 1 => p + 14 = 3k + 15 = 3(k + 5) \(⋮\)3 (loại)
Khi p = 3q + 2 => p + 10 = 3q + 12 = 3(q + 4) \(⋮\)3 (loại)
Vậy p = 3 là giá trị cần tìm
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
P=\(n^4+4=n^4+4n^2+4-4n^2=\left(n^2+2\right)-4n^2=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)
Để P là số nguyên tố thì:
TH1:\(\hept{\begin{cases}n^2-2n+2=1\\n^2+2n+2=n^4+4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n\left(n-2\right)=-1\left(1\right)\\n^2+2n+2=n^4+4\left(2\right)\end{cases}}\).Giải phương trình (1) ta được n=1 thay vào phương trình 2 cũng thỏa mãn.Vậy x=1 thỏa mãn
TH2:\(\hept{\begin{cases}n^2+2n+2=1\\n^2-2n+2=n^4+4\end{cases}}\).Tương tự TH1 thì ta cũng có x=-1 thỏa mãn
Vậy...........................
BS đề bài : n thuộc N*
P = n4+4 = n4 + 4n2 + 4 - 4n2
= (n2 + 2)2 - (2n)2
= (n2 - 2n +2)(n2 + 2n + 2)
Mà n2 + 2n +2 > n2 - 2n +2 ( vì n thuộc N*)
\(\Rightarrow\)Để P là số nguyên tố thì n2 - 2n + 2 = 1
\(\Rightarrow\)n2 - 2n +1 = 0
\(\Rightarrow\)(n - 1)2 = 0
\(\Rightarrow\)n - 1 = 0
\(\Rightarrow\)n = 1 ( thỏa mãn điều kiện )
Thử lại : Với n=1 thì P = 14 +4 = 5 là số nguyên tố ( chọn )
Vậy n = 1