Giải và biện luận bất phương trình: mx+2 lớn hơn hoặc bằng 3x-m+1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m x - m 2 > 2 x - 4 ⇔ (m - 2)x > (m - 2)(m + 2)
Nếu m > 2 thì m – 2 > 0, bất phương trình có nghiệm là x > m + 2;
Nếu m < 2 thì m – 2 < 0, bất phương trình có nghiệm là x < m + 2;
Nếu m = 2 thì bất phương trình trở thành 0x > 0, bất phương trình vô nghiệm.
\(mx^2+\left(m+1\right)x-2m\le0\) (1)
Nếu \(m=0\) thì dễ thấy (1) có nghiệm \(x\le0\)
Xét \(m\ne0\) Khi đó (1) là bất phương trình bậc hai với a=m.
Ngoài ra, biệt thức
\(\Delta=9m^2+2m+1=\left(3m+\frac{1}{3}\right)^2+\frac{8}{9}>0\) \(\curlyvee m\in R\). Từ đó ta có ngay kết luận :
- Khi m < 0, bất phương trình (1) có tập nghiệm
T(1) = \(\left(x;\frac{-m-1+\sqrt{9m^2+2m+1}}{2m}\right)\)\(\cup\)\(\left(\frac{-m-1-\sqrt{9m^2+2m+1}}{2m};+\infty\right)\)
- Khi m = 0, bất phương trình (1) có tập nghiệm T(1) =R+
- Khi m>0, bất phương trình (1) có tập nghiệm
T(1)=\(\left(\frac{-m-1-\sqrt{9m^2+2m+1}}{2m};\frac{-m-1+\sqrt{9m^2+2m+1}}{2m}\right)\)
Với \(m=0\)
\(PT\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
Với \(m\ne0\)
\(\Delta'=\left(m-1\right)^2-m\left(m-3\right)=m+1\)
PT vô nghiệm \(\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)
PT có nghiệm kép \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)
\(\Leftrightarrow x=-\dfrac{b'}{a}=\dfrac{m-1}{2m}\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow m+1>0\Leftrightarrow m>-1;m\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{m-1+\sqrt{m+1}}{m}\\x=\dfrac{m-1-\sqrt{m+1}}{m}\end{matrix}\right.\)
\(mx^2-3x=x^2+1\Leftrightarrow\left(m-1\right)x^2-3x-1=0\)
Nếu m =1 thì \(\left(m-1\right)x^2-3x-1=0\) có dạng \(-3x-1=0\) và có nghiệm \(x=-\frac{1}{3}\)
Nếu m \(\ne\)1 thì \(\left(m-1\right)x^2-3x-1=0\) là phương trình bậc hai ẩn x, có \(\Delta=4m+5\)
* Nếu \(\Delta<0\) hay là \(m<-\frac{5}{4}\) thì \(\left(m-1\right)x^2-3x-1=0\) vô nghiệm
* Nếu \(\Delta\ge0\) hay là \(m\ge-\frac{5}{4}\) ; \(m\ne1\) thì
\(\left(m-1\right)x^2-3x-1=0\) \(\Leftrightarrow x=\frac{3-\sqrt{4m+5}}{2\left(m-1\right)}:=x_1\) hoặc \(x=\frac{3+\sqrt{4m+5}}{2\left(m-1\right)}:=x_2\)
Ta có kết luận :
* Khi \(m<-\frac{5}{4}\) thì phương trình vô nghiệm
* Khi \(m=1\) thì phương trình có một nghiệm \(x=-\frac{1}{3}\)
* Khi \(m\ge-\frac{5}{4};m\ne1\) thì phương trình có hai nghiệm \(x=x_1;_{ }\) \(x=x_2\)
\(mx+2\ge3x-m+1\)
\(\Leftrightarrow x\left(m-3\right)\ge-\left(m+1\right)\)
*)\(m\ne-1\Rightarrow x\ge\dfrac{-\left(m+1\right)}{m-3}\)
*)\(m=-1\) (Loại)