K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

Câu trả lời suất sắc thì đc 2gp

Mà hình như câu trả lời này ko ss cho lăms

7 tháng 11 2017

==" đào đâu ra GP???

\(A=x^2-5x+y^2+xy-4y+2017\)

\(A=x^2+x\left(y-5\right)+y^2-4y+2017\)

\(A=\left[x+\dfrac{\left(y-5\right)}{2}\right]^2-\dfrac{\left(y-5\right)^2}{4}+y^2-4y+2017\)

\(A=\left[x+\dfrac{\left(y-5\right)}{2}\right]^2-\dfrac{\left(y-5\right)^2}{4}+\left(y-2\right)^2+2013\)

chịu :)) Ngu lâu khó đạo tạo nên tới đây dừng bức :))

10 tháng 3 2016

nhân 2 lên rồi ghếp hằng đẳng thức

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

\(A=x^2-5x+y^2+xy-4y+2017\)

\(\Leftrightarrow x^2+x(y-5)+(y^2-4y+2017-A)=0\)

Vì pt xác định nên luôn có nghiệm. Tức là:

\(\Delta=(y-5)^2-4(y^2-4y+2017-A)\geq 0\)

\(\Leftrightarrow -3y^2+6y-8043+4A\geq 0\)

\(\Leftrightarrow 4A\geq 3y^2-6y+8043=3(y-1)^2+8040\geq 8040\)

\(\Rightarrow A\geq 2010\)

Vậy \(A_{\min}=2010\)

10 tháng 3 2016

A = x2 + y2 + xy - 5x - 4y + 2002 
= x2 + x(y - 5) + y2 - 4y + 2002 
= x2 + 2.x.(y - 5)/2 + (y - 5)2/4 - (y - 5)2/4 + y2 - 4y + 2002 
= [x + (y - 5)/2]2 + 3/4*y2 - 3y/2 + 7983/4 
>= 3/4*y2 - 3y/2 + 7983/4 (hàm bậc 2,min tại y = 1) 
= 3/4 - 3/2 + 7983/4 = 1995 
vậy minA = 1995,dấu = xảy ra khi x + y - 5 = 0 và y = 1 
<> x = 4 và y = 1

10 tháng 3 2016

x2+(y−5)x+y2−4y+2002−A=0

Δ=(y−5)^2−4(y^2−4y+2002−A)
=y^2−10y+25−4y^2+16y−8008+4A
=−3(y−1)^2−7980+4A≥0

→4A−7980≥0

→A≥1995

Dấu bằng khi y=1;x=2

24 tháng 7 2021

A = y^2 - 4y + 9 = y^2 - 4y + 4 + 5 

= ( y - 2 )^2 + 5 >= 5 

Dấu ''='' xảy ra khi y = 2 

Vậy GTNN A là 5 khi y = 2

B = x^2 - x + 1 = x^2 - x + 1/4 + 3/4 = ( x - 1/2 )^2 + 3/4 >= 3/4

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTNN B là 3/4 khi x = 1/2 

C = 2x^2 - 6x = 2 ( x^2 - 3x + 9 / 4 - 9/4 ) 

= 2 ( x - 3/2 )^2 - 9/2 >= -9/2 

Dấu ''='' xảy ra khi x = 3/2 

Vậy GTNN C là -9/2 khi x = 3/2 

24 tháng 7 2021

ありがとう

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Đây không phải là phương trình đường tròn do có \(xy\).

b) Vì \({a^2} + {b^2} - c = {1^2} + {2^2} - 5 = 0\)nên phương trình đã cho không là phương trình tròn.

c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {4^2} - 1 = 24 > 0\)nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;4} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c}  = 2\sqrt 6 \).

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Yêu cầu đề là gì vậy bạn?

NV
27 tháng 7 2021

\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)

\(\Rightarrow M\le9\)

\(M_{max}=9\) khi \(\left\{{}\begin{matrix}x+y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-\sqrt{3};\sqrt{3}\right);\left(\sqrt{3};-\sqrt{3}\right)\)

\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{\dfrac{1}{3}\left(x^2+y^2+xy\right)+\dfrac{2}{3}\left(x^2+y^2-2xy\right)}{x^2+y^2+xy}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\)

\(\Rightarrow M\ge1\)

\(M_{min}=1\) khi \(\left\{{}\begin{matrix}x-y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow x=y=\pm1\)

NV
21 tháng 7 2021

\(\dfrac{x^2+y^2}{2}\ge xy\Rightarrow-xy\ge-\dfrac{x^2+y^2}{2}\)

\(\Rightarrow4=x^2+y^2-xy\ge x^2+y^2-\dfrac{x^2+y^2}{2}=\dfrac{x^2+y^2}{2}\)

\(\Rightarrow x^2+y^2\le8\)

\(C_{max}=8\) khi \(x=y=\pm2\)

\(x^2+y^2\ge-2xy\Rightarrow-xy\le\dfrac{x^2+y^2}{2}\)

\(4=x^2+y^2-xy\le x^2+y^2+\dfrac{x^2+y^2}{2}=\dfrac{3}{2}\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\ge\dfrac{8}{3}\)

\(C_{min}=\dfrac{8}{3}\) khi \(\left(x;y\right)=\left(-\dfrac{2}{\sqrt{3}};\dfrac{2}{\sqrt{3}}\right);\left(\dfrac{2}{\sqrt{3}};-\dfrac{2}{\sqrt{3}}\right)\)

21 tháng 7 2021

undefinedĐúng thì like giúp mik nha bạn. Thx bạn

26 tháng 10 2021

a: \(=\left(3-x\right)\left(x+1\right)\)

b: \(=3x\left(x-y\right)-5\left(x-y\right)\)

=(x-y)(3x-5)

c: \(=x\left(x-y\right)-10\left(x-y\right)\)

\(=\left(x-y\right)\left(x-10\right)\)

26 tháng 10 2021

a) \(=x\left(3-x\right)+\left(3-x\right)=\left(3-x\right)\left(x+3\right)\)

b) \(=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

c) \(=x\left(x-y\right)-10\left(x-y\right)=\left(x-y\right)\left(x-10\right)\)

d) \(=\left(x+y\right)^2-16=\left(x+y-4\right)\left(x+y+4\right)\)

e) \(=\left(x-y\right)\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(x-y-4\right)\)

f) \(=9-\left(4x^2-4xy+y^2\right)=9-\left(2x-y\right)^2=\left(3-2x+y\right)\left(3+2x-y\right)\)

g) \(=y\left(y^2-2xy+x^2-y\right)\)

h) \(=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

i) \(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left(2x+y\right)\)