K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

A = x2 + y2 + xy - 5x - 4y + 2002 
= x2 + x(y - 5) + y2 - 4y + 2002 
= x2 + 2.x.(y - 5)/2 + (y - 5)2/4 - (y - 5)2/4 + y2 - 4y + 2002 
= [x + (y - 5)/2]2 + 3/4*y2 - 3y/2 + 7983/4 
>= 3/4*y2 - 3y/2 + 7983/4 (hàm bậc 2,min tại y = 1) 
= 3/4 - 3/2 + 7983/4 = 1995 
vậy minA = 1995,dấu = xảy ra khi x + y - 5 = 0 và y = 1 
<> x = 4 và y = 1

10 tháng 3 2016

x2+(y−5)x+y2−4y+2002−A=0

Δ=(y−5)^2−4(y^2−4y+2002−A)
=y^2−10y+25−4y^2+16y−8008+4A
=−3(y−1)^2−7980+4A≥0

→4A−7980≥0

→A≥1995

Dấu bằng khi y=1;x=2

1 tháng 3 2016

A=x2+y2+xy-5x-4y+2002

2A=x2+2xy+y2+x2-10x+25+y2-8y+16+1961

2A=\(\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2+1961\ge1961\)

10 tháng 3 2016

nhân 2 lên rồi ghếp hằng đẳng thức

1 tháng 3 2016

2A= (x2 + y2 + 2xy) + (x2 -10x + 25) + (y2 – 8y + 16) +2002 – (16+25) 
2A= (x + y)2 + (x - 5)2 + (y - 4)2 + 1961. 
Từ biểu thức tổng của các số dương trên ta so sánh từng cặp giá trị (x;y) sao cho các số dương trên nhận giá trị bằng 0 ta có các cặp như sau: (0;0); (0;4); (5;0); (5;4) ta tìm GTNN của A là ½(1961+25+16)

6 tháng 4 2016

2(x^2+y^2+xy-5x-4y+2002)=(x+y-2)^2+(x-3)^2+(y-2)^2+3987>=(x+y-2+3-x+2-y)^2/3+3987=3+3987=3990

=>gtnt=1995

11 tháng 3 2016

dù là cách nào đi nữa thì kết quả vẫn như nhau

11 tháng 3 2016

min=1995 khi y=1 x=2

28 tháng 4 2015

2.M = 2x2 – 10x + 2y2 + 2xy – 8y + 4038 = (x2 – 10x + 25) +( y2 + 2xy + y2) + ( y2 – 8y + 16)  + 3997

= (x-5)2 + (x+y)2 + (y - 4)2 + 3997 = N + 3997

Áp dụng bất đẳng thức Bu- nhi a: (ax+ by + cz)2 \(\le\) (a2+ b2 + c2). (x2 + y2 + z2). Dấu bằng xảy ra khi a/x = b/y = c/z

Ta có: [(5 - x).1 + (x+ y).1 + (y + 4).1]2 \(\le\) [(5 - x)2 + (x+y)2 + (y - 4)2 ].(1+ 1+1) = N .3 = 3.N

<=> 92 = 81 \(\le\) 3.N => N \(\ge\) 27 => 2.M \(\ge\) 27 + 3997 = 4024 

=> M \(\ge\)2012

vậy Min M  = 2012

khi 5 - x = x+ y = y + 4 => x = 4 ; y = -3

 

10 tháng 11 2017

a) Từ gt, suy ra

\(\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x^2-xy+y^2\right)+\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+2\right)+\left(x+y+2\right)^2=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x+y+2\right)\left(2x^2-2xy+2y^2+2x+2y+4\right)=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x+y+2\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+2\right]=0\)

Do đó: \(x+y+2=0\Leftrightarrow x+y=-2\)

Mặt khác \(xy>0\Rightarrow x< 0;y< 0\)

Áp dụng AM-GM, ta có

\(\sqrt{\left(-x\right)\left(-y\right)}\le\dfrac{\left(-x\right)+\left(-y\right)}{2}=1\) nên \(xy\le1\)\(\Rightarrow\dfrac{-2}{xy}\le-2\)

\(M=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}\le-2\)

GTLN của M là -2 khi x=y=-1

10 tháng 11 2017

Áp dụng Cauchy-Schwarz dạng Engel, ta có

\(VT=\dfrac{a^6}{a^3+a^2b+b^2a}+\dfrac{b^6}{b^3+b^2c+c^2b}+\dfrac{c^6}{c^3+c^2a+ca^2}\ge\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Mặt khác: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-ab+b^2\ge ab\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

Tương tự: \(b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

\(3\left(a^3+b^3+c^3\right)\ge a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

\(\Rightarrow\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\dfrac{a^3+b^3+c^3}{3}\)

Vậy ta có đpcm. Đẳng thức xảy ra khi và chỉ khi a=b=c