K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

Câu hỏi của Nguyễn Văn Hòa - Toán lớp 7 - Học toán với OnlineMath

E tham khảo tại đây, ta thấy ngay rằng MI + MJ + MK = AH (AH là chiều cao của tam giác)

                                                                       BẠN TỰ VẼ HÌNH NHA

                                                                                       Giải 

                                    Gọi cạnh tam giác đều ABC la a, chiều cao là h.Ta có:

   a)                      Ta có Stam giác BMC+Stam giác CMA+Stam giác AMB =S​tam giác ABC                    

                   <=>(1/2)ax+(1/2)ay+(1/2)az=(1/2)ah  <=> (1/2)a.(x+y+z)=(1/2)ah      

              <=>x+y+z=h không phụ thuộc vào vị trí của điểm M

   b)                    x2+y2\(\ge\)2xy ; y2+z2\(\ge\)2yz ;  z2+x2\(\ge\)2zx

             =>2.(x2+y2+z2)  \(\ge\)2xy+2xz+2yz

             =>3.(x2+y2+z2)   \(\ge\)x2+y2+z2+2xy+2xz+2yz

            =>x2+y2+z2     \(\ge\)(x+y+z)2/3=h2/3  không đổi

                     Dấu "=" xảy ra khi x=y=z

           Vậy để x2 + y2 + z2 đạt giá trị nhỏ nhất thì M là giao điểm của 3 đường phân giác của tam giác ABC hay M là tâm của tam giác ABC

20 tháng 7 2017

\(a.\)Ta có:    \(S_{\Delta BMC}=\frac{BC.x}{2}\)\(\Rightarrow\)\(x=\frac{2.S_{\Delta MBC}}{BC}\)
                      \(S_{\Delta BMA}=\frac{BA.z}{2}\)\(\Rightarrow\)\(z=\frac{2.S_{\Delta BMA}}{AB}\)
                      \(S_{\Delta AMC}=\frac{AC.y}{2}\)\(\Rightarrow\)\(y=\frac{2.S_{\Delta AMC}}{AC}\)
   mà \(\Delta ABC\) đều nên AB = BC = CA
suy ra \(x+y+z=\frac{2\left(S_{\Delta AMC}+S_{\Delta BMA}+S_{\Delta BMC}\right)}{AB}\)
suy ra đpcm

19 tháng 4 2016

a/

Ta có ME vg AC và FH vg AC => ME//FH

Ta có EH vg BH và MF vg BH => MF//EH

=> Tứ giác MFHE là hình bình hành. Hơn nữa ^MFH=90 => MFHE là hình chữ nhật => ME=FH (cạnh đối hcn)

b/

Ta có MF//EH (cm ở trên) => ^BMF=^BCA (góc đồng vị)

Mà ^BCA=^ABC (do tg ABC cân tại A)

=> ^ABC=^BMF

Xét hai tam giác vuông DBM và tg vuông FBM có

^ABC=^BMF

Cạnh huyền BM chung

=> tg DBM=tg FBM (Hai tg vuông có cạnh huyền và 1 góc nhọn tương ứng bằng nhau) => MD=BF

c/

Ta có ME=HF và MD=BF

Mà BF+HF=BH không đổi => MD+ME=BH không đổi