(x+y)2 + (1-x) * (1+y)=0
M.n giải giúp mk bài này vs
mk cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a/(a+b+c)<a/(a+b)<a+c/a+b+c ( Cái này là vì a/a+b <1)
Tương tự vậy với mấy cái kia cx thế cộng theo vế là ra nha bạn
coi như giải hệ pt
\(\hept{\begin{cases}y=x+1\left(1\right)\\y^2-3y\sqrt{x}+2x=0\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(y^2-3\sqrt{x}.y+\frac{9x}{4}\right)=\frac{9x}{4}-2x=\frac{x}{2}\\ \)
\(\left(y-\frac{3\sqrt{x}}{2}\right)^2=\left(\frac{\sqrt{x}}{2}\right)^2\Rightarrow\orbr{\begin{cases}y=\frac{3\sqrt{x}}{2}-\frac{\sqrt{x}}{2}=\sqrt{x}\\y=\frac{3\sqrt{x}}{2}+\frac{\sqrt{x}}{2}=2\sqrt{x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=x+1\left(3\right)\\2\sqrt{x}=x+1\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{1}{4}-1\left(vonghiem\right)\\\left(\sqrt{x}-1\right)^2=0\Rightarrow\sqrt{x}=1\Rightarrow x=1\end{cases}}\)
Vậy chỉ có điểm x=1; y=2 thỏa mãn
Trả lời :
Mk giúp bn câu a ) thôi mà sai thì thôi nhé :)))
a, \(\left|x\right|+\left|y\right|=0\)
\(\Leftrightarrow x=0;y=0\) \(\Rightarrow\left|x\right|+\left|y\right|=0\)
Vậy x = 0 ; y = 0
_Học tốt
câu a,b,c dạng tương tự nhau nha nên mình làm câu a
a)\(\left|x\right|+\left|y\right|=0\left(1\right)\)
Ta có: \(\hept{\begin{cases}\left|x\right|\ge0;\forall x,y\\\left|y\right|\ge0;\forall x,y\end{cases}\Rightarrow}\left|x\right|+\left|y\right|\ge0;\forall x,y\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\hept{\begin{cases}\left|x\right|=0\\\left|y\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
Vậy \(\left(x,y\right)=\left(0;0\right)\)
d) \(\left|x^2+1\right|=12\left(1\right)\)
Ta thấy \(x^2\ge0;\forall x\)
\(\Rightarrow x^2+1\ge1>0;\forall x\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x^2+1=12\)
\(\Leftrightarrow x^2=11\)
\(\Leftrightarrow x=\pm\sqrt{11}\)
Vậy \(x=\pm\sqrt{11}\)
x+y+z=0
nên x+y=-z; y+z=-x; x+z=-y
\(\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
\(=\dfrac{x+y}{y}\cdot\dfrac{y+z}{z}\cdot\dfrac{x+z}{x}=-1\)