BÀi 2: \(\Delta\) MND cân tại M. LẤy điểm NP làm cạnh vẽ \(\Delta\) NPQ sao cho M và Q khác phía so với NP,đồng thời góc PNM bằng góc PNQ.Chứng minh MNPQ là hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
MN_I_Ox
PQ_I_Ox
=> MN//PQ
NP_I_Oy
QR_I_Oy
=> NP//QR
b) Ta có:
PMN^ = OPQ^ (đồng vị)(*)
RQO^ = PNQ^ (đồng vị)(**)
Mặt khác:
PMN^ + MNP^ = 1v
PNQ^ + MNP^ = 1v
=> PMN^ = PNQ^(***)
Từ (*),(**),(***) => PMN^ =OPQ^ = PNQ^ = RQO^
a) Ta có:
MN_I_Ox
PQ_I_Ox
=> MN//PQ
NP_I_Oy
QR_I_Oy
=> NP//QR
b) Ta có:
PMN^ = OPQ^ (đồng vị)(*)
RQO^ = PNQ^ (đồng vị)(**)
Mặt khác:
PMN^ + MNP^ = 1v
PNQ^ + MNP^ = 1v
=> PMN^ = PNQ^(***)
Từ (*),(**),(***) => PMN^ =OPQ^ = PNQ^ = RQO^
B) Kẻ MH vuông góc QP và NK vuông góc với QP ta có :
Ta có : MHK = NKH = 90 độ
=> MH // NK
=> Tứ giác MNKH là hình thang
Mà MHK = NKH = 90 độ
=> Tứ giác MNKH là hình thang cân
=> HMN = MNK = 90 độ
=> MNK = NKH = 90 độ
=> MN // HK
=> MN// QP
=> MNPQ là hình thang
Mà QMN = MNP (gt)
=> MNPQ là hình thang cân(dpcm)
Ko bt tớ làm đúng ko nếu sai đừng chửi mk nhé
Gọi M là giao điểm DI và AB
Ta có: AM//DC
=> \(\widehat{M}=\widehat{D_2}\)( sole trong) (1)
Mà \(\widehat{D_1}=\widehat{D_2}\)( DI là phân giác góc D)
=> \(\widehat{M}=\widehat{D_1}\)
=> Tam giác ADM cân
=> ID=IM (2)
Ta lại có: \(\widehat{I_1}=\widehat{I_2}\)( so le trong) (3)
Từ (1) , (2) => Tam giác IBM = tam giác ICD
=> BM=DC
Do vậy: AD=AM=AB+BM=AB+DC (AD=AM vì tam giác ADM cân)
Cho hình thang MNPQ có góc P > 90 độ > góc Q và góc N = 2 lần góc M.
a) Xác định các đáy của hình thang MNPQ.
b) Nếu cho thêm MN = NP = MQ:2 = a. C/m MNPQ là hình thang cân. Gọi O là giao điểm của MP & NQ. Tính góc MOQ.