cho hình vẽ , biết : AD//BC và AD=BC
a, chứng minh AB//CD và AB+ CD
b, chứng minh AD cắt BD tại trung điểm mỗi đoạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta\)AOB và \(\Delta\)COD. TA CÓ:
BO=OD
OA=OC
AOB=COD(đối đỉnh)
=> \(\Delta\)AOB=\(\Delta\)COD(c-g-c)
=>AOB=COD(hai góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB//CD
(hình hơi xấu =P)
a,Xét tam giác ABO và tam giác COD có:
BO=OD (vì O là TĐ của BD)
AO=OC (vì O là TĐ của AC)
AOB = DOC (đối đỉnh)
\(\Rightarrow\)tam giác ABO=tam giác COD (c.g.c)
\(\Rightarrow\)AB=CD (hai cạnh tương ứng)
và BAO=OCD (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong tạo bởi AC cắt AB và DC => AB song song với CD
b, Xét tam giác AOD và tam giác OCD có:
BO=OD (vì O là TĐ của BD)
AO=OC (vì O là TĐ của AC)
AOD=BOC (đối đỉnh)
\(\Rightarrow\)tam giác AOD=tam giác OCD (c.g.c)
\(\Rightarrow\)AD=BC (hai cạnh tương ứng)
và BCO=OAD (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong tạo bởi AC cắt BC và AD => BC song song với AD
*Lưu ý: những chữ số viết liền nhau mà không ghi chữ "tam giác'' (như ABC) xin tự hiểu là góc
a: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AD//BC; AC//BD
a: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AC//BD; AD//BC
bn ơi!
bn ko cho pyt đó là hình j thỳ sao nó cắt nhau đây?
lại 1 mâu thuẫn nữa: AB// BD(gt) z làm sao mà nó cắt nhau?
mình ko biết cách c/m thẳng hàng ở câu c thôi ai giúp với
CM
a) Vì M là trung điểm của đoạn thẳng AB nên
=> AM = BM ( tính chất trung điểm của đoạn thẳng )
Vì M là trung điểm của CD nên
=> CM = DM ( tính chất trung điểm của đoạn thẳng )
Xét tam giác AMC và tam giác BMD ta có:
AM =BM (CM trên)
CM = DM (CM trên)
góc AMC = góc BMD ( 2 góc đối đỉnh)
=> Tam giác AMC = tam giác BMD ( c.g.c)
=> AC = BD ( 2 cạnh tương ứng )
b) Xét tam giác AMD và tam giác BMC ta có:
AM = BM (CM phần a)
DM=CM (CM phần a)
góc AMD = góc CMB (2 góc đối đỉnh)
=> tam giác AMD = tam giác BMC (c.g.c)
=> AD = BC (2 cạnh tương ứng)(đpcm)
Học tốt. Nhớ k cho mik nha.
a/ cm AB // CD và AB = CD :
Có AD // BC và AD = BC
=> tứ giác ABCD là hình bình hành
=> AB // CD và AB = CD
b/ cm AD cắt BD tại trung điểm mỗi đoạn :
Vì tứ giác ABCD là hình bình hành
=> AC và BD là 2 đường chéo
=> AD cắt BD tại trung điểm mỗi đoạn