Trên nửa đường tròn (O;R ) đường kính BC lấy điểm A sao cho AB = R
a, cm tam giác ABC vuông tại A và tính số đo góc B,C của tam giác ABC(biết làm)
b, qua B kẻ tiếp tuyến vs nữa đường tròn (O) nó cắt AC tại điểm D qua D kẻ tiếp tuyến ĐỂ vs nữa đường tròn (O) (E là tiếp điểm)gọi I là giao điểm của Be và OD cm OD⊥ BC và DI.DO=DA.DC (biết làm)
c, kẻ EH⊥BC , EH ∩ CD tại G cm IG//BC (câu này quan trọng mong mọi người giúp giùm)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc CAO+góc CMO=180 độ
=>CAOM nội tiếp
góc DMO+góc DBO=180 độ
=>DMOB nội tiếp
b: Xét (O) có
CM,CA là tiếp tuyến
=>CM=CA và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc DOC=1/2*180=90 độ
Xét ΔDOC vuông tại O có OM là đường cao
nên CM*MD=OM^2
=>AC*BD=R^2
A B C D H E O
a/ Nối A với D ta có
\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp BC\)
=> H và D cùng nhìn AC dưới 1 góc vuông => AHDC là tứ giác nội tiếp
b/
Xét tg vuông ACO có
\(\widehat{ACO}+\widehat{AOC}=90^o\)
Ta có \(\widehat{ADH}+\widehat{EDB}=\widehat{ADB}=90^o\)
Xét tứ giác nội tiếp AHDC có
\(\widehat{ACO}=\widehat{ADH}\) (Góc nội tiếp cùng chắn cung AH)
\(\Rightarrow\widehat{AOC}=\widehat{EDB}\)
Xét tam giác EOH và tg EBD có
\(\widehat{BED}\) chung
\(\widehat{AOC}=\widehat{EDB}\)
=> tg EOH đồng dạng với tg EDB (g.g.g)
\(\Rightarrow\dfrac{EH}{EB}=\dfrac{EO}{ED}\Rightarrow EH.ED=EO.EB\)
a) Ta có \(\widehat{ADB}=90^0\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow\widehat{ADC}=90^0\)
Tứ giác \(AHDC\) có: \(\widehat{ADC}=\widehat{AHC}=90^0\) mà 2 góc này nội tiếp và chắn cung AC
\(\Rightarrow AHDC\) là tứ giác nội tiếp
b) Tứ giác \(AHDC\) nội tiếp \(\Rightarrow\widehat{ACO}=\widehat{ADE}\) (góc nội tiếp cùng chắn 1 cung)
Ta có: \(\widehat{EOH}=90^0-\widehat{ACO}=90^0-\widehat{ADE}=\widehat{EDB}\)
Xét \(\Delta EOH\) và \(\Delta EDB\) có:
\(\widehat{BED}\) chung
\(\widehat{EOH}=\widehat{EDB}\) (đã chứng minh)
\(\Rightarrow\Delta EOH\sim\Delta EDB\) (g.g) \(\Rightarrow\dfrac{EO}{EH}=\dfrac{ED}{EB}\Rightarrow EH.ED=EO.EB\)
a: Xét (O) có
CM,CA là các tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC là đường trung trực của MA
=>OC vuông góc với MA tại I
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD là trung trực của BM
=>OD vuông góc với BM
Từ (1) và (2) suy ra góc COD=1/2*180=90 độ
=>O nằm trên đường tròn đường kính CD
b: Xét tứ giác MIOK có
góc MIO=góc IOK=góc MKO=90 độ
nên MIOK là hình chữ nhật
=>MO=IK
c: Xét hình thang ABDC có
O,O' lần lượt là trung điểm của AB,CD
nên OO' là đường trung bình
=>OO''//AC
=>OO' vuông góc với AB
=>AB là tiếp tuyến của (O')
d) Ta có: N là trung điểm của BC
⇒ AN là trung tuyến của ΔABC
CO cũng là trung tuyến của ΔABC
AN ∩ CO = H
⇒ H là trọng tâm ΔABC
Vậy khi C di chuyển trên nửa đường tròn (O) thì H di chuyển trên nửa đường tròn
(O; R/3)
a: góc ADB=1/2*sđ cung AB=90 độ
=>AD vuông góc MB
Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại E
góc AEM=góc ADM=90 độ
=>AEDM nội tiếp
b: Xét ΔMAB vuông tại A có AD vuông góc MB
nên MA^2=MD*MB
a: Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên MO là trung trực của AC
=>MO vuông góc AC tại E
góc ADB=1/2*sđ cung AB=90 độ
=>AD vuông góc MB
góc ADM=góc AEM=90 độ
=>AMDE nội tiếp
b: ΔMAB vuông tại A có AD là đường cao
nên MA^2=MD*MB
a: Sửa đề: OE\(\perp\)AN
Xét tứ giác OBME có \(\widehat{OBM}+\widehat{OEM}=90^0+90^0=180^0\)
=>OBME là tứ giác nội tiếp
=>O,B,M,E cùng thuộc một đường tròn
b: Ta có: ΔOAN cân tại O
mà OE là đường cao
nên OE là phân giác của góc AON
=>OK là phân giác của góc AON
Xét ΔONK và ΔOAK có
ON=OA
\(\widehat{NOK}=\widehat{AOK}\)
OK chung
Do đó: ΔONK=ΔOAK
=>\(\widehat{OAK}=\widehat{ONK}\)
mà \(\widehat{ONK}=90^0\)
nên \(\widehat{OAK}=90^0\)
=>KA là tiếp tuyến của (O)