Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh: góc BAH= góc C, góc CAH= góc B
Vẽ hình giúp mình với ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhá.
a, Vì tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H , có:
AB = AC (gt)
AH là cạnh chung
=> Tam giác AHB = Tam giác AHC ( cạnh huyền - cạnh góc vuông )
b, Vì Tam giác AHB = Tam giác AHC nên HB = HC ( hai cạnh tương ứng )
và \(\widehat{BAH}=\widehat{CAH}\) ( hai góc tương ứng )
c, Vì Tam giác AHB = Tam giác AHC nên \(\widehat{ABH}=\widehat{ACH}\) hay \(\widehat{KBH}=\widehat{ICH}\)
Xét tam giác HKB vuông tại K và tam giác HIC vuông tại I, có:
HB = HC ( cmt )
\(\widehat{KBH}=\widehat{ICH}\)
=> Tam giác HKB = Tam giác HIC ( cạnh huyền - góc nhọn )
Ta có ΔABH = ΔACH (cmt)
Suy ra góc BAH = góc CAH (hai góc tương ứng)
Phù~ mik vừa thi toán học kì 2 có đề này nè, bây h bạn cần giải ko hay khỏi
Ta có: \(\widehat{BAH}+\widehat{B}=90^0\)
\(\widehat{C}+\widehat{B}=90^0\)
Do đó: \(\widehat{BAH}=\widehat{C}\)
Ta có: \(\widehat{CAH}+\widehat{BAH}+90^0\)
\(\widehat{B}+\widehat{C}=90^0\)
mà \(\widehat{BAH}=\widehat{C}\)
nên \(\widehat{CAH}=\widehat{B}\)