Cho S=1+4+4\(^2\)+4\(^3\)+.....+4\(^{59}\)
Chứng minh rằng S chia hết cho 85
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: S=1+4+42+43+…+459
=>S=(1+4+42+43)+…+(456+457+458+459)
=>S=(1+4+42+43)+…+456.(1+4+42+43)
=>S=85+…+456.85
=>S=(1+…+456).85 chia hết cho 85
=>S chia hết cho 85
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4)+(42+43)+...+(458+459)A=(1+4)+(42+43)+...+(458+459)
A=(1+4)+42(1+4)+...+458(1+4)A=(1+4)+42(1+4)+...+458(1+4)
A=5+42.5+...+448.5A=5+42.5+...+448.5
A=5(1+42+...+448)A=5(1+42+...+448)
⇒A⋮5
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
k cho mik đi mik cảm ơn
Chia hết cho 5
(1+4)+(4^2+4^3)+...+(4^58+4^59)
=5+4^2(1+4)+...+4^58(1+4)
=5+4^2.5+...+4^58.5
=5(1+4^2+...+4^58)chia hết cho 5
Chia hết cho 21;85 làm tương tự
Chia hết cho 21 nhóm 3 số nhé
Chia hết cho 85 nhóm 4 số nhé
4A=4+4^2+4^3+.....+4^60
4A-A=(4+4^2+...+4^60)-(1+4+4^2+...+4^59)
3A=4^60-1
A=\(\frac{4^{60}-1}{3}\)
Số số hạng của S:
9 - 0 + 1 = 10 (số)
Do 10 ⋮ 2 nên ta có thể nhóm các số hạng của S thành từng nhóm mà mỗi nhóm có 2 số hạng như sau:
S = (1 + 3) + (3² + 3³) + ... + (3⁸ + 3⁹)
= 4 + 3².(1 + 3) + ... + 3⁸.(1 + 3)
= 4 + 3².4 + ... + 3⁸.4
= 4.(1 + 3² + ... + 3⁸) ⋮ 4
Vậy S ⋮ 4
S=(1+4+42+43)+(44+45+46+47)+.......+(456+457+458+459)
=(1+4+42+43)+44(1+4+42+43)+.......+456(1+4+42+43)
=85(1+44+.....+456)=>đccm