\(^2\)+4\(^3\)+.....+4\(^{59}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2015

S=(1+4+42+43)+(44+45+46+47)+.......+(456+457+458+459)

  =(1+4+42+43)+44(1+4+42+43)+.......+456(1+4+42+43)

  =85(1+44+.....+456)=>đccm

10 tháng 10 2015

Ta có: S=1+4+42+43+…+459

=>S=(1+4+42+43)+…+(456+457+458+459)

=>S=(1+4+42+43)+…+456.(1+4+42+43)

=>S=85+…+456.85

=>S=(1+…+456).85 chia hết cho 85

=>S chia hết cho 85

12 tháng 8 2016

S = 1 + 2 + 22 + 23 + ... + 220 + 221 (có 22 số; 22 chia hết cho 2)

S = (1 + 2) + (2+ 23) + ... + (220 + 221)

S = 3 + 22.(1 + 2) + ... + 220.(1 + 2)

S = 3 + 22.3 + ... + 220.3

S = 3.(1 + 22 + ... + 220) chia hết cho 3 (đpcm)

\(S=1+2+2^2+2^3+....+2^{21}\)

\(=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+......+2^{20}\left(1+2\right)\)

\(=\left(1+2\right)\left(1+2^2+2^4+.....+2^{20}\right)\)

\(=3\left(1+2^2+2^4+....+2^{20}\right)\)

Chia hết cho 3

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

3 tháng 11 2017

các bn giúp mk nha mk đang rất cần ai trả lwofi đầu tiên và chính xác mk tích cho

6 tháng 6 2018

a/ Ta có :

\(A=4+4^2+.....+4^{23}+4^{24}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+....+\left(4^{23}+4^{24}\right)\) (12 nhóm)

\(=4\left(4+4^2\right)+4^3\left(4+4^2\right)+.......+4^{23}\left(4+4^2\right)\)

\(=4.20+4^3.20+.....+4^{23}.20\)

\(=20\left(4+4^3+...+4^{23}\right)⋮20\)

\(\Leftrightarrow A⋮20\left(đpcm\right)\)

b/ Ta có :

\(A=4+4^2+4^3+........+4^{23}+4^{24}\)

\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+.......+\left(4^{22}+4^{23}+4^{24}\right)\)

\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+....+4^{22}\left(1+4+4^2\right)\)

\(=4.21+4^4.21+....+4^{22}.21\)

\(=21\left(4+4^4+......+4^{22}\right)⋮21\)

\(\Leftrightarrow A⋮21\left(đpcm\right)\)

6 tháng 6 2018

*A chia hết cho 20 : A có 24 lũy thừa.
Trước hết ta thấy rõ A chia hết cho 4 vì từng số hang của dãy số A chia hết cho 4
A có 24 lũy thừa nên ta chia thành 12 cặp lũy thừa
A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)
A = 4.(1+4) + 4^3.(1+4) + ...+ 4^23.(1+4)
A = 4.5 + 4^3.5 + .....+ 4^23.5
vậy A chia hết cho 5 và 4 nên A chia hết cho 20

*A chia hết cho 21 : A có 24 lũy thừa

Nhóm thành mỗi nhóm 3 lũy thừa ta được 8 nhóm lũy thừa
A = 4.(1+4+4^2) + ......+ 4^22.(1+4+4^2)
A = 4.21 + ......+4^22.21 => A chia hết 21

Vậy A chia hết cho 21.


*A chia hết cho 420 .

Ta có : A chia hết cho 20 và 21 mà 20 và 21 là nguyên tố cùng nhau nên
A chia hết cho 20.21 = 420 (Áp dụng: Một số đồng thời chia hết cho cả m và n. m và n đồng thời chỉ chia hết cho 1 và chính nó thì số đó chia hết cho tích mxn)

Vậy A chia hết cho 420 .

1 tháng 2 2019

bài này dễ mà

22 tháng 7 2019

Mik lười quá bạn tham khảo câu 3 tại đây nhé:

Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath

22 tháng 7 2019

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)

\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)

\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)

\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)

\(S=1+2+2^2+2^3+2^4+.....+9^{98}\)

\(\Rightarrow2S=2+2^2+2^4+...+2^{99}\)

\(\Rightarrow S=2S-S=1-2^{99}\)

14 tháng 7 2016

\(S=1+2+2^2+2^3+...+2^{98}\)

\(=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}\right)\)

\(=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{96}\left(1+2+2^2\right)\)

\(=\left(1+2^3+2^6+...+2^{93}+2^{96}\right)\left(1+2+2^2\right)\)

\(=\left(1+2^3+2^6+...+2^{93}+2^{96}\right).7\)chia hết cho 7.

Vậy S chia hết cho 7.

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)