Tìm số dư của phép chia :
a/ 3810 cho 13
b/ 389 cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(38^{10}=\left(39-1\right)^{10}\)
Ta đều biết rằng biểu thức này sẽ có dạng \(39P+1\) (nếu muốn viết đầy đủ thì phải dùng khai triển Newton) và vì \(13|39\) nên biểu thức trên cũng có thể được viết dưới dạng \(13Q+1\) (với \(Q=3P\)). Do đó \(38^{10}\) chia 13 dư 1.
Ta làm tương tự: \(38^9=\left(39-1\right)^9=13R-1\) nên lúc này \(38^9\) chia 13 dư 12.
hằng đẳng thức : \(\left(a+b\right)^n=B\left(a\right)+b^n=B\left(b\right)+a^n\)
áp dụng hằng đẳng thức trên ta có
\(38^{10}=\left(39-1\right)^{10}=B\left(39\right)+\left(-1\right)^{10}=B\left(39\right)+1\)
vì B(39) chia hết cho 13 nên B(39)+1 chia 13 dư 1
tương tự làm câu còn lại nhé
Từ giả thiết => \(a\equiv1\left(mod3\right)\), a=3k+1 (\(k\inℕ\)); b\(\equiv2\left(mod3\right)\), b=3q+2 \(\left(q\inℕ\right)\)
=> \(A=4^a+9^b+a+b=1=1+0+1+2\left(mod3\right)\)hay \(A\equiv4\left(mod3\right)\)(1)
Lại có \(4^a=4^{3k+1}=4\cdot64^k\equiv4\left(mod7\right)\)
\(9^b=9^{3q+2}\equiv2^{3q+2}\left(mod7\right)\Rightarrow9^b\equiv4\cdot8^q\equiv4\left(mod7\right)\)
Từ gt => \(a\equiv1\left(mod7\right),b\equiv1\left(mod7\right)\)
Dẫn đến \(A=4^a+9^b+a+b\equiv4+4+1+1\left(mod7\right)\)hay \(A\equiv10\left(mod7\right)\)
Từ (1) => \(A\equiv10\left(mod3\right)\)mà 3,7 nguyên tố cùng nhau nên \(A\equiv10\left(mod21\right)\)
=> A chia 21 dư 10
a) 472 chia cho 43
Ta có 472 = 43.10 + 42
Vậy phần dư là 42 thương là 10 .
b) 571 chia cho 13
Ta có 571 = 43.13 + 12
Vậy phần dư là 12 thương là 43 .
c) 732 chia cho 61
Ta có 732 = 61.12
Vậy phần dư là 0 thương là 12 .
d) 704 chia cho 44
Ta có 704 = 44.16
Vậy phần dư là 0 , thương là 44
B=3+3²+3³+..... +3¹00
B=3²+3³+3⁴+... 3¹00+3
B=3²(1+3+3²) +... +3 98(1+3+3²) +3
B=3²•13+... +3 98•13+3
=) 3²•13+3 98•13 chia hết cho 13
=) Số dư là 3
a, Ta có 382 : 13 dư 1
\(\Rightarrow\) 3810 = (382)5 = 1 chia 13 dư 1
b, Ta có 382 : 13 dư 1 , 38 : 13 dư 12
\(\Rightarrow\) 384 = (382)2 =1 : 13 dư 1
\(\Rightarrow\) 389 = 38 . 384 .384 = 1 . 1.1= 1 : 13 dư 1
Vậy .....