K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

a, Ta có 382 : 13 dư 1

\(\Rightarrow\) 3810 = (382)5 = 1 chia 13 dư 1

b, Ta có 382 : 13 dư 1 , 38 : 13 dư 12

\(\Rightarrow\) 384 = (382)2 =1 : 13 dư 1

\(\Rightarrow\) 389 = 38 . 384 .384 = 1 . 1.1= 1 : 13 dư 1

Vậy .....

24 tháng 3 2017

ta có A = 1! + 2! + 3! + ... + 2015!

           = (...0)

28 tháng 7 2023

\(38^{10}=\left(39-1\right)^{10}\)

 Ta đều biết rằng biểu thức này sẽ có dạng \(39P+1\) (nếu muốn viết đầy đủ thì phải dùng khai triển Newton) và vì \(13|39\) nên biểu thức trên cũng có thể được viết dưới dạng \(13Q+1\) (với \(Q=3P\)). Do đó \(38^{10}\) chia 13 dư 1.

 Ta làm tương tự: \(38^9=\left(39-1\right)^9=13R-1\) nên lúc này \(38^9\) chia 13 dư 12.

 

28 tháng 7 2023

mik chx học cái đó :<

17 tháng 7 2017

hằng đẳng thức : \(\left(a+b\right)^n=B\left(a\right)+b^n=B\left(b\right)+a^n\)

áp dụng hằng đẳng thức trên ta có 

\(38^{10}=\left(39-1\right)^{10}=B\left(39\right)+\left(-1\right)^{10}=B\left(39\right)+1\)

vì B(39) chia hết cho 13 nên B(39)+1 chia 13 dư 1 
tương tự làm câu còn lại nhé

3 tháng 3 2016

A chia 7 dư 6=> A-6 chia hết cho 7=>A +36 chia hết cho 7(1)

A chia 13 dư 3=>A-3 chia hết cho 13=> A +36 chia hết cho 13(2)

Từ(1)(2)=>A+36 chia hết cho 7 và 13=>A thuộc bội chung của 7 và 13

Mà UCLN(7;13)=1 => A+36 thôucj bội của 7x13=91=>Achia 91 dư :91-36=55

13 tháng 5 2020

Giúp mình với nha ,thanks nhiều

14 tháng 5 2020

Từ giả thiết => \(a\equiv1\left(mod3\right)\), a=3k+1 (\(k\inℕ\)); b\(\equiv2\left(mod3\right)\), b=3q+2 \(\left(q\inℕ\right)\)

=> \(A=4^a+9^b+a+b=1=1+0+1+2\left(mod3\right)\)hay \(A\equiv4\left(mod3\right)\)(1)

Lại có \(4^a=4^{3k+1}=4\cdot64^k\equiv4\left(mod7\right)\)

\(9^b=9^{3q+2}\equiv2^{3q+2}\left(mod7\right)\Rightarrow9^b\equiv4\cdot8^q\equiv4\left(mod7\right)\)

Từ gt => \(a\equiv1\left(mod7\right),b\equiv1\left(mod7\right)\)

Dẫn đến \(A=4^a+9^b+a+b\equiv4+4+1+1\left(mod7\right)\)hay \(A\equiv10\left(mod7\right)\)

Từ (1) => \(A\equiv10\left(mod3\right)\)mà 3,7 nguyên tố cùng nhau nên \(A\equiv10\left(mod21\right)\)

=> A chia 21 dư 10

25 tháng 9 2017

a) 472 chia cho 43

Ta có 472 = 43.10 + 42

Vậy phần dư là 42  thương là 10 .

b) 571 chia cho 13

Ta có 571 = 43.13 + 12

Vậy phần dư là 12  thương là 43  .

c) 732 chia cho 61

Ta có 732 = 61.12

Vậy phần dư là 0  thương là 12 .

d) 704 chia cho 44

Ta có 704 = 44.16

Vậy phần dư là 0 , thương là 44

23 tháng 12 2023

B=3+3²+3³+..... +3¹00 

B=3²+3³+3⁴+... 3¹00+3

B=3²(1+3+3²) +... +3 98(1+3+3²) +3

B=3²•13+... +3 98•13+3

=) 3²•13+3 98•13 chia hết cho 13

=) Số dư là 3