K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
1 tháng 8 2023

\(A=x+\sqrt{x}\) có điều kiện xác định là: \(x\ge0\)

\(\Rightarrow A_{min}=0\) khi x = 0

\(B=x+5\sqrt{x+7}\)  có điều kiện xác định là: \(x\ge-7\)

\(\Rightarrow B_{min}=-7+5\cdot0=-7\) khi x = -7

\(C=2x-6\sqrt{x+1}\) có điều kiện xác định là \(x\ge-1\)

\(\Rightarrow C_{min}=2\cdot\left(-1\right)-6\cdot0=-2\) khi x = -1

NV
8 tháng 1 2021

\(A=2x^2+\dfrac{4}{x}=2x^2+\dfrac{2}{x}+\dfrac{2}{x}\ge3\sqrt[3]{\dfrac{8x^2}{x^2}}=6\)

\(A_{min}=6\) khi \(x=1\)

\(B=x^3+\dfrac{3}{x}=x^3+\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}\ge4\sqrt[4]{\dfrac{x^3}{x^3}}=4\)

\(B_{min}=4\) khi \(x=1\)

20 tháng 7 2021

a) \(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)\(min_A=1\)

b) \(B=3x^2+x-2=3\left(x^2+\dfrac{1}{3}x-\dfrac{2}{3}\right)=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}-\dfrac{25}{36}\right)=3\left(x+\dfrac{1}{6}\right)^2-\dfrac{25}{12}\ge\dfrac{-25}{12}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{6}\)\(min_B=\dfrac{-25}{12}\)

c) \(C=\dfrac{4}{x^2}-\dfrac{3}{x}-1=\left(\dfrac{4}{x^2}-\dfrac{3}{x}+\dfrac{9}{16}\right)-\dfrac{25}{16}=\left(\dfrac{2}{x}+\dfrac{2}{3}\right)^2-\dfrac{25}{16}\ge\dfrac{-25}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-3\)\(min_C=\dfrac{-25}{16}\)

d) \(D=x^2+y^2-x+3y+7=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)+\dfrac{9}{2}=\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)\(min_D=\dfrac{9}{2}\)

14 tháng 3 2016

A) |x-7|>/0 

dấu "=" xảy ra tại x=7

khi đó A=|7-7|+6-7=6-7=-1

vậy GTNN của A=-1 tại x=7

14 tháng 3 2016

b) |x-2/3|>/0

dấu"=" xảy ra khi |x-2/3|=0 khi đó x=2/3

ta có: B=2/3+1/2-|2/3-2/3|=7/67/6-0=7/6

vậy GTLN của B=7/6 tại x=2/3

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8