Cho ∆ABC có 3 góc nhọn. Gọi O là trung điểm của BC. Gọi D là điểm đối xứng của A qua BC, E là điểm đối xứng của A qua O. Cm BCED là hình thang cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là giao điểm của AD và BC => K là trung điểm AD (vì D đối xứng với A qua BC)
lại có O là trung điểm AE (vì E đối xứng với A qua O)
=> KO là đường trung bình của tam giác ADE => KO // DE hay BC // DE => BCED là hình thang (1)
ta có O là trung điểm AE (cmt) và O cũng là trung điểm BC (giả thiết)
=> ABEC là hình bình hành => AB // CE => \(\widehat{ABC}=\widehat{BCE}\)(so le trong)
lại có \(\widehat{ABC}=\widehat{DBC}\)(do D đói xứng với A qua BC)
=> \(\widehat{DBC}=\widehat{BCE}\)(2)
từ (1) và (2) => BCED là hình thang cân.
Gọi H là giao điểm của AD và BC
=>H là trung điểm của AD
Xét ΔADE có
H là trung điểm của AD
O là trung điểm của AE
Do đó: HO là đường trung bình
=>HO//DE
hay DE//BC
Xét tứ giác ABEC có
O là trung điểm của AE
O là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: BE=AC(1)
Xét ΔACD có
CH là đường cao
CH là đường trung tuyến
Do đó ΔACD cân tại C
=>CA=CD(2)
Từ (1) và (2) suy ra BE=CD
Xét tứ giác BCED có BC//ED
nên BCED là hình thang
mà BE=CD
nên BCED là hình thang cân
Ta có : A đối xứng D qua BC , gọi AD cắt BC tại H ta có AD \(\perp\) BC tại H và AH = HD
Xét tg ADE ta có ; AH = HD , AO = OE
=> OH // DE hay BC // DE .
tứ giác BCED có BC//DE => BCED là hih thang .
Xét tg OAB và tg OEC có :
OB = OC , OA = OE , góc AOB = góc COE
=> tg OAB = tg OEC => góc ABO = góc OCE (1).
Có : BH \(\perp\) AD tại trung điểm H của AD
=> BAD cân tại B => góc ABH = góc HBD (2) .
Từ (1) và (2) có : góc HBD = góc OCE
=> hih thang BCED có : góc HBD = góc OCE
=> BCED là hih thang cân .
Gọi H là giao điểm của AD và BC
=>H là trung điểm của AD
Xét ΔADE có
H là trung điểm của AD
O là trung điểm của AE
Do đó: HO là đường trung bình
=>HO//DE
hay DE//BC
Xét tứ giác ABEC có
O là trung điểm của AE
O là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: BE=AC(1)
Xét ΔACD có
CH là đường cao
CH là đường trung tuyến
Do đó ΔACD cân tại C
=>CA=CD(2)
Từ (1) và (2) suy ra BE=CD
Xét tứ giác BCED có BC//ED
nên BCED là hình thang
mà BE=CD
nên BCED là hình thang cân