Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ACEB có:
AO = OE
BO = OC
=> Tứ giác ACEB là hình bình hành (DH)
=> AC // BE
Ta có: A đối xứng với E qua O thuộc BC; A lại đối xứng với D qua BC
=> ED // BC
=> Tứ giác BCDE là hình thang
Gọi giao của BC và AD là K
Xét tam giác ACD có: CK vừa là trung tuyến vừa là đường cao (GT)
=> Tam giác ACD là tam giác cân
=> CK cũng là tia phân giác góc C
=> Góc ACK = góc DCK
Lại có AC // BE (cmt)
=> Góc ACB = góc CBE
=> Góc DCB = góc EBC
=> Hình thang BCDE là hình thang cân (DH)
Gọi K là giao điểm của AD và BC => K là trung điểm AD (vì D đối xứng với A qua BC)
lại có O là trung điểm AE (vì E đối xứng với A qua O)
=> KO là đường trung bình của tam giác ADE => KO // DE hay BC // DE => BCED là hình thang (1)
ta có O là trung điểm AE (cmt) và O cũng là trung điểm BC (giả thiết)
=> ABEC là hình bình hành => AB // CE => \(\widehat{ABC}=\widehat{BCE}\)(so le trong)
lại có \(\widehat{ABC}=\widehat{DBC}\)(do D đói xứng với A qua BC)
=> \(\widehat{DBC}=\widehat{BCE}\)(2)
từ (1) và (2) => BCED là hình thang cân.