Hệ số của x2y2 trong khai triển (2x - 3y2)3 là...
Giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số hạng tổng quát trong khai triển \(\left(2x-\dfrac{1}{x}\right)^{13}\) là \(C^k_{13}\cdot\left(2x\right)^{13-k}\cdot\left(-\dfrac{1}{x}\right)^{13}\)
\(=C^k_{13}\cdot2^{13-k}\cdot x^{13-k}\cdot\dfrac{\left(-1\right)}{x^{13}}\)
\(=C^k_{13}\cdot\left(-1\right)\cdot2^{13-k}\cdot x^{-k}\)
Hệ số của x^10 sẽ tương ứng với -k=10
=>k=-10(loại)
=>Không có x10 trong khai triển này
Số hạng tổng quát trong khai triển thế này mới đúng chứ em:
\(C_{13}^k.\left(2x\right)^k.\left(-\dfrac{1}{x}\right)^{13-k}=C_{13}^k.2^k.x^k.\left(-1\right)^{13-k}.x^{x-13}=C_{13}^k.2^k.\left(-1\right)^{13-k}.x^{2k-13}\)
Mặc dù kết quả vẫn là ko tồn tại số hạng chứa \(x^{10}\) do \(2k-13=10\Rightarrow k=\dfrac{23}{2}\) ko phải số tự nhiên
Tìm hệ số của \(x^2y^2\)trong khai triển \(\left(2x+3y^2\right)^3\)
GIÚP MÌNH VỚI MAI MÌNH ĐI HỌC RỒI
\(\left(2x+3y^2\right)^3\)
\(=8x^3+36x^2y^2+54xy^4+27y^6\)
Xét thấy hệ số của \(x^2y^2\)khi khai triển là 36
Vậy hệ số của \(x^2y^2\)khi khai triển \(\left(2x+3y^2\right)^3\)là \(36\)
Khi khai triển \(\left(a+b\right)^n\)thì nó có chứa các hạng tử \(m\cdot a^{n-k}\cdot b^k\)và m được xác định bằng tam giác Paxcan ( Tam giác Pascal – Wikipedia tiếng Việt )
Theo đề bài ta có n = 3
=> các hệ số lần lượt của nó là 1 - 3 - 3 - 1
Áp dụng khai triển \(\left(2x+3y^2\right)^3=8x^3+36x^2y^2+54xy^4+27y^6\)
Vậy ta có hệ số của x2y2 là 36
\(\left(2x-3y^2\right)^3=8x^3-36x^2y^2+54xy^4-27y^6\)
hệ số của \(x^2y^2\)là -36