Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm hệ số của \(x^2y^2\)trong khai triển \(\left(2x+3y^2\right)^3\)
GIÚP MÌNH VỚI MAI MÌNH ĐI HỌC RỒI
\(\left(2x+3y^2\right)^3\)
\(=8x^3+36x^2y^2+54xy^4+27y^6\)
Xét thấy hệ số của \(x^2y^2\)khi khai triển là 36
Vậy hệ số của \(x^2y^2\)khi khai triển \(\left(2x+3y^2\right)^3\)là \(36\)
Khi khai triển \(\left(a+b\right)^n\)thì nó có chứa các hạng tử \(m\cdot a^{n-k}\cdot b^k\)và m được xác định bằng tam giác Paxcan ( Tam giác Pascal – Wikipedia tiếng Việt )
Theo đề bài ta có n = 3
=> các hệ số lần lượt của nó là 1 - 3 - 3 - 1
Áp dụng khai triển \(\left(2x+3y^2\right)^3=8x^3+36x^2y^2+54xy^4+27y^6\)
Vậy ta có hệ số của x2y2 là 36
(x+3)(2x2-5x+1)
=2x3-5x2+x+6x2-15x+3
=2x3-5x2+6x2+x-15x+3
=2x3+x2-14x+3
Vậy hệ số x là : -14
(2x^2 +3y)^3
Áp dụng định lý Nhị thức Newton
3Ck.(2x^2)^(3-k).(3y)^k
= 3Ck.(2)^(3-k).(x)^(6-2k).3^k.y^k
Để được x^2y^2 thì 6 - 2k = 2 và k = 2
<=> k = 2 và k = 2 ( chọn )
Thì hệ số sẽ là 3C2.2^(3-2).3^2 = 3C2.2.3^2 = 54
Nguồn:Mọi người sao ra đáp số mà không giải thế
\(\left(2x-3y^2\right)^3=8x^3-36x^2y^2+54xy^4-27y^6\)
hệ số của \(x^2y^2\)là -36