tim m de he pt co 5 nghiem
\(\left\{{}\begin{matrix}x^3-mx=y\\y^3-my=x\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m=1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+2y=2\\2x+3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=4\\2x+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+10=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=5\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(-8;5)
b) Ta có: \(\left\{{}\begin{matrix}x+2y=m+1\\2x+3y=m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2m+2\\2x+3y=m-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=m+4\\x+2\cdot\left(m+4\right)=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2m+8=m+1\\y=m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-m-7\\y=m+4\end{matrix}\right.\)
Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì \(\left\{{}\begin{matrix}-m-7>3\\m+4< 5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m>10\\m< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -10\\m< 1\end{matrix}\right.\Leftrightarrow m< -10\)
Vậy: Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì m<-10
ĐKXĐ: \(xy\ne0\)
- Với \(m=0\Rightarrow x=y=0\) (ktm ĐKXĐ) \(\Rightarrow\) hpt vô nghiệm (ktm)
- Với \(m\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}x^2-2xy=my\\y^2-2xy=mx\end{matrix}\right.\)
\(\Rightarrow x^2-y^2=m\left(y-x\right)\)
\(\Rightarrow\left(x-y\right)\left(x+y+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}y=x\\y=-x-m\end{matrix}\right.\)
- Với \(y=x\Rightarrow-x=m\Rightarrow x=y=-m\)
- Với \(y=-x-m\)
\(\Rightarrow x^2-2x\left(-x-m\right)=m\left(-x-m\right)\)
\(\Rightarrow3x^2+3mx+m^2=0\)
\(\Delta=9m^2-12m^2=-3m^2< 0\Rightarrow\) luôn vô nghiệm với \(m\ne0\)
Vậy với \(m\ne0\) hệ có nghiệm duy nhất \(x=y=-m\) (thỏa mãn)
\(\Rightarrow m\ne0\)
a. Bạn tự giải
b. \(\Leftrightarrow\left\{{}\begin{matrix}x-2y=4m-5\\4x+2y=6m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=4m-5\\5x=10m-5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2m-1\\y=-m+2\end{matrix}\right.\)
\(\dfrac{2}{x}-\dfrac{1}{y}=-1\Rightarrow\dfrac{2}{2m-1}-\dfrac{1}{-m+2}=-1\) (\(m\ne\left\{\dfrac{1}{2};2\right\}\))
\(\Leftrightarrow2\left(-m+2\right)-\left(2m-1\right)=\left(m-2\right)\left(2m-1\right)\)
\(\Leftrightarrow2m^2-m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{3}{2}\end{matrix}\right.\)
a.
⇔ \(\left\{{}\begin{matrix}x-2y=4.3-5\\2x+y=3.3\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x-2y=7\\2x+y=9\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-2x+4y=-14\\2x+y=9\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}5y=-5\\2x+y=9\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}y=-1\\2x-1=9\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}y=-1\\x=5\end{matrix}\right.\)
Vậy nghiệm của hpt là: (5;1)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=m-6\\\left(m+3\right)x-2y=4m-13\end{matrix}\right.\)
Theo điều kiện có nghiệm duy nhất của hệ thì:
\(\frac{m+3}{1}\ne\frac{-2}{-1}\Leftrightarrow m\ne-1\)
Khi đó: \(\left\{{}\begin{matrix}x-y+6=m\\3x-2y+13=4m-mx\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y+6=m\\\frac{3x-2y+13}{4-x}=m\end{matrix}\right.\) \(\Rightarrow x-y+6=\frac{3x-2y+13}{4-x}\)
Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m
Muốn chắc chắn hơn, bạn có thể biện luận riêng trường hợp \(x=4\)
\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)
\(\Rightarrow x^2+y^2=\left(m+3\right)^2+m^2=2m^2+6m+9=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)
\(\Rightarrow\left(x^2+y^2\right)_{min}=\dfrac{9}{2}\) khi \(m+\dfrac{3}{2}=0\Rightarrow m=-\dfrac{3}{2}\)
Trừ vế cho vế:
\(\Rightarrow x^3-y^3=6\left(x^2-y^2\right)-m\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-6\left(x+y\right)+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2-6\left(x+y\right)+m=0\end{matrix}\right.\)
- Với \(x=y\Rightarrow x^3=8x^2-mx\Leftrightarrow x\left(x^2-8x+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-8x+m=0\end{matrix}\right.\)
Do đó hệ luôn luôn có nghiệm \(\left(x;y\right)=\left(0;0\right)\) với mọi m
Để hệ chỉ có 1 nghiệm thì \(x^2-8x+m=0\) vô nghiệm \(\Rightarrow m>16\)
Khi đó, xét pt \(x^2+xy+y^2-6\left(x+y\right)+m=0\) (1)
Ta có:
\(x^2+xy+y^2-6\left(x+y\right)+m>\dfrac{3}{4}\left(x+y\right)^2-6\left(x+y\right)+16=\dfrac{3}{4}\left(x+y-4\right)^2+4>0\)
\(\Rightarrow\) (1) vô nghiệm hay hệ có đúng 1 nghiệm \(\left(x;y\right)=\left(0;0\right)\)
Vậy \(m>16\) thì hệ có 1 nghiệm