Cho tam giác ABC cân tại A (góc A < 90 độ), đường cao BH. CMR: \(\frac{AH}{CH}=2\left(\frac{AB}{BC}\right)^2-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao AK.
- ΔABC cân tại A có đường cao AH đồng thời là đường trung tuyến nên BK = CK = BC/2
- Xét ΔAKC và ΔBHC có :
Góc AKC = góc BHC = 90⁰ (AK, BH là đường cao trong ΔABC)
Góc C chung
Vậy ΔAKC đồng dạng với ΔBHC (g.g.)
⇨ AC/BC = KC/HC
⇔ AB/BC = BC/2HC (AB = AC do ΔABC cân tại A, KC = BC/2 cmt)
⇔ 2AB.HC = BC² (tỉ lệ thức : ngoại tỉ bằng trung tỉ)
⇔ 1/HC = 2AB/BC²
⇔ AB/HC = 2AB²/BC² (nhân AB vào 2 vế)
⇔ AC/HC = 2(AB/BC)² (AB = AC)
⇔ (AH + HC)/HC = 2(AB/BC)²
⇔ AH/HC + 1 = 2(AB/BC)²
⇔ AH/HC = 2(AB/BC)² - 1 (điều cần chứng minh)
Gọi E là điểm đối xứng của C qua A
=> \(\Delta\)BCE vuông tại E => \(HC=\frac{BC^2}{CE}=\frac{BC^2}{2AC}\)
\(AH=AC-HC=AC-\frac{BC^2}{2AC}=\frac{2AC^2-BC^2}{2AC}\)
\(\Rightarrow\frac{AH}{HC}=2\left(\frac{AC}{BC}\right)^2-1\)
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
27/12/2017 lúc 18:59
Ex1: Điền từ thích hợp vào chỗ trống
This is Ba. He(1)......... a student.Every morning he(2).........up at 5.30.He(3).............. his teeth and takes a(4)............... then has breakfast at 6.15. He goes to school(5)........six thirty.His house is(6).............his house so he walks.The classes(7)............at 7.15 and finish at 11.15.In the afternoon he plays sports with his friend,Nam. They play badminton but now they(8).................soccer.In the evening he (9)......his homework and goes to(10).........at 9.30
Ex2:Cho dạng đúng của động từ trong ngoặc
1.My sister(have)...........classes from Monday to Friday
2.She(read)................a book in her room now
3.He(get)........................up at 6.00 every day?
4.There(not be)..............a big yard behind his classroom
27/12/2017 lúc 18:59
Ex1: Điền từ thích hợp vào chỗ trống
This is Ba. He(1)......... a student.Every morning he(2).........up at 5.30.He(3).............. his teeth and takes a(4)............... then has breakfast at 6.15. He goes to school(5)........six thirty.His house is(6).............his house so he walks.The classes(7)............at 7.15 and finish at 11.15.In the afternoon he plays sports with his friend,Nam. They play badminton but now they(8).................soccer.In the evening he (9)......his homework and goes to(10).........at 9.30
Ex2:Cho dạng đúng của động từ trong ngoặc
1.My sister(have)...........classes from Monday to Friday
2.She(read)................a book in her room now
3.He(get)........................up at 6.00 every day?
4.There(not be)..............a big yard behind his classroom
27/12/2017 lúc 18:59
Ex1: Điền từ thích hợp vào chỗ trống
This is Ba. He(1)......... a student.Every morning he(2).........up at 5.30.He(3).............. his teeth and takes a(4)............... then has breakfast at 6.15. He goes to school(5)........six thirty.His house is(6).............his house so he walks.The classes(7)............at 7.15 and finish at 11.15.In the afternoon he plays sports with his friend,Nam. They play badminton but now they(8).................soccer.In the evening he (9)......his homework and goes to(10).........at 9.30
Ex2:Cho dạng đúng của động từ trong ngoặc
1.My sister(have)...........classes from Monday to Friday
2.She(read)................a book in her room now
3.He(get)........................up at 6.00 every day?
4.There(not be)..............a big yard behind his classroom
Dễ quá đi
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ
Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.
Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó
\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)
Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:
\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)
Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.
Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)
Đến đây dễ rồi nha, làm tiếp thì chán quá :(
Tự vẽ hình
a) Xét tứ giác AEHF có: ^EAF=90(gt)
^AFH=90(gt)
^AEF=90(gt)
=> Tứ giac AEHF là hình chữ nhật
Gọi O là giao điểm của AH và EF
Vì AEHF là hcn(cmt)
=> OE=OA
=>\(\Delta\)OAE cân tại O
=>^OAE=^OEA
Xét \(\Delta\)ABH vuông tại H(gt)
=>^B+^OAE=90 (1)
Xét \(\Delta\)ABC vuông tại A(gt)
=>^B+^C=90 (2)
Từ (1) và (2) suy ra: ^OAE=^C
Mà ^OAE=^OEA(cmt)
=>^AEF=^ACB
Xét \(\Delta\)AEF và \(\Delta\)ACB có:
^EAF=^CAB=90(gt)
^AEF=ACB(cmt)
=>\(\Delta\)AEF~\(\Delta\)ACB(g.g)
=>\(\frac{AE}{AC}=\frac{AF}{AB}\)
=>AE.AB=AF.AC
Từ phần b bạn tự làm nhé (^.^)