Tìm n thuộc N để
A = \(\dfrac{7n-8}{2n-3}\) có GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân số \(\dfrac{7n-8}{2n-3}\) đạt GTLN thì :
\(2n-3\) đạt GTNN
Và phân số \(\dfrac{7n-8}{2n-3}\in Z\)
\(\Leftrightarrow2n-3=1\Leftrightarrow n=2\left(tm\right)\)
Thay \(n=2\) ta cs :
\(\dfrac{7n-8}{2n-3}=\dfrac{7.2-8}{2.2-3}=6\)
Vậy \(\dfrac{7n-8}{2n-3}\) đạt GTLN = 6 khi \(n=2\)
\(\dfrac{\left(7n-8\right)}{\left(2n-3\right)}=\dfrac{\left(7n-\dfrac{21}{2}+\dfrac{5}{2}\right)}{\left(2n-3\right)}\)
\(=\dfrac{\left[\left(\dfrac{7}{2}\right).\left(2n-3\right)+\dfrac{5}{2}\right]}{\left(2n-3\right)}\)
\(=\dfrac{\dfrac{7}{2}+5}{\left(4n-6\right)}\)
Phân số đã cho có GTLN khi \(\dfrac{5}{\left(4n-6\right)}\) có \(GTLN\).
\(\Leftrightarrow\) \(4n-6\) có giá trị dương nhỏ nhất (với n là stn) hay \(n = 2 \)
Vậy để phân số \(\dfrac{\left(7n-8\right)}{\left(2n-3\right)}\) đạt MAX tại \(n = 2 \)
refer\(mệt r chỉ muốn bài dễ thoi)
https://hoc24.vn/cau-hoi/tim-so-tu-nhien-n-de-phan-so-7n-82n-3-co-gia-tri-lon-nhat.159546081385
refer
hôm qua có r mà
https://hoc24.vn/cau-hoi/tim-so-tu-nhien-n-de-phan-so-7n-82n-3-co-gia-tri-lon-nhat.159546081385
\(A=\dfrac{7n-8}{2n-3}\)
Đặt k cho biểu thức trên:
\(A=\dfrac{7n-8}{2n-3}\) = k
=> \(\dfrac{2k}{1}=\dfrac{14n-16}{2n-3}\)
=> 2k= \(\dfrac{7.\left(2n-3\right)+5}{2n-3}\)
Mà để k đạt giá trị lớn khi 2k đạt giá trị lớn, và 2n đạt GTNN khi và chỉ khi 2n đạt GT dương nhỏ nhất
=> 2n- 3=1
=> 2n= 4
=> n=2
xem ở trên trang web này:https://olm.vn/hoi-dap/question/36957.html