x/y=y/5 vàx.y=10. Tìm x và y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{3.4}=\frac{z}{3.5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ 1 và 2
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)s
Áp dụng tính chất dãy tỉ số bằng nhau
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\frac{x}{8}=2\Rightarrow x=16\)
\(\frac{y}{12}=2\Rightarrow y=24\)
\(\frac{z}{15}=2\Rightarrow z=30\)
B) Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
=> \(\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
xy = 10
=> 2k . 5k = 10
=> 10 . k2 = 10
=> k2 = 1
=> \(\hept{\begin{cases}k=-1\\k=1\end{cases}}\)
=> Với \(\hept{\begin{cases}k=-1\Rightarrow\hept{\begin{cases}x=-2\\y=-5\end{cases}}\\k=1\Rightarrow\hept{\begin{cases}x=2\\y=5\hept{\begin{cases}\\\end{cases}}\end{cases}}\end{cases}}\)
x/3=y/5=x+y/3+5=16/8=2
x/3=2 suy ra x=6
y/5=2 suy ra y=10
x/2=y/3suy ra x/8=y/12
y/4=z/5 suy ra y/12=z/15
x/8=y/12=z/15=x+y-z/8+12-15=10/5=2
x/8=2 suy ra x=16
y/12=2 suy ra y=24
x/15=2 suy ra z=30
1) \(x+y=10\) mà \(x=y\) nên: \(x=y=\dfrac{10}{2}=5\)
2) \(2x+3y=180\) mà \(x=y\)
Ta có: \(2y+3y=180\Rightarrow5y=180\Rightarrow y=180:5=36\)
Vậy \(x=y=36\)
3) \(x+y=180\) mà \(x=y\) nên: \(x=y=\dfrac{180}{2}=90\)
4) \(3x+5y=13\) mà \(y=2x\) ta có:
\(3x+5\cdot2x=13\Rightarrow13x=13\Rightarrow x=1\)
\(y=2x=2\cdot1=2\)
Các câu còn lại bạn làm tương tự
\(\frac{x}{3}=\frac{y}{5}\)và x + y = 16
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
\(\frac{x}{3}=2\Rightarrow x=2.3=6\)
\(\frac{y}{5}=2\Rightarrow y=2.5=10\)
Vậy...
Câu 3:
\(\dfrac{x}{y}=\dfrac{5}{9}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=5\\ \dfrac{y}{9}=10\Rightarrow y=90\)
Câu b:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\dfrac{x}{2}=7\Rightarrow x=14\\ \dfrac{y}{3}=7\Rightarrow y=21\)
Câu c:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-1}{5+7-10}=\dfrac{20}{2}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=50\\ \dfrac{y}{7}=10\Rightarrow y=70\\ \dfrac{z}{10}=10\Rightarrow z=100\)
Câu d:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\dfrac{x}{3}=11\Rightarrow x=3\\ \dfrac{y}{4}=11\Rightarrow y=44\\ \dfrac{z}{5}=11\Rightarrow z=55\)
Câu e:
\(\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{6}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10} \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{8+6-10}=\dfrac{20}{4}=5\)
\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{6}=5\Rightarrow y=30\\ \dfrac{z}{10}=5\Rightarrow z=50\)
3) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.9=90\end{matrix}\right.\)
4) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x}{10}=\dfrac{2y}{6}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=7.3=21\end{matrix}\right.\)
5) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-z}{5+7-10}=\dfrac{20}{2}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.7=70\\z=10.10=100\end{matrix}\right.\)
6) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2y}{8}=\dfrac{2z}{10}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.3=33\\y=11.4=44\\z=11.5=55\end{matrix}\right.\)
7) \(\Rightarrow\dfrac{x}{12}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{12+6-10}=\dfrac{20}{8}=\dfrac{5}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}.12=30\\y=\dfrac{5}{2}.6=15\\z=\dfrac{5}{2}.10=25\end{matrix}\right.\)
1: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x-y}{7-13}=\dfrac{42}{-6}=-7\)
=>x=-48; y=-91
2: x/y=3/4
=>4x=3y
=>4x-3y=0
mà 2x+y=10
nên x=3 và y=4
3: =>7x-3y=0 và x-y=-24
=>x=18 và y=42
4: =>7x-5y=0 và x+y=24
=>x=10 và y=14
Ta có : x / 2 = y / 3 và y + x = 10
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
x / 2 = y / 3 = x + y / 2 + 3 = 10 / 5 = 2
=> x / 2 = 2 => x = 2 . 2 = 4
=> y / 3 = 2 => y = 2 . 3 = 6
Vậy x = 4 ; y = 6
Ta có x / 4 = y / 5 và x + y = 18
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
x / 4 = y / 5 = x + y / 4 + 5 = 18 / 9 = 2
=> x / 4 = 2 => x = 2 . 4 = 8
=> y / 5 = 2 => y = 2 . 5 = 10
Vậy x = 8 ; y = 10
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.2=4\\y=3.2=6\end{cases}}\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2\)
\(\Rightarrow\hept{\begin{cases}x=4.2=8\\y=5.2=10\end{cases}}\)