Đồng nhất hai vế của phương trình trên ta được:
\(\left\{{}\begin{matrix}a=1\\3a+b=2\\3b+c=-3\\3c=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=0\end{matrix}\right.\)
Vậy a = 1, b = -1, c = 0
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Ta có: \(\left(ax^2+bx+c\right)\left(x+3\right)=x\left(ax^2+bx+c\right)+3\left(ax^2+bx+c\right)\)
\(=ax^3+bx^2+cx+3ax^2+3bx+3c\)
\(=ax^3+\left(3a+b\right)x^2+\left(3b+c\right)x+3c\)
Theo bài ra ta có:
\(ax^3+\left(3a+b\right)x^2+\left(3b+c\right)x+3x=x^3+2x^2-3x\)
Đồng nhất hai vế của phương trình trên ta được:\(\left\{{}\begin{matrix}a=1\\3a+b=2\\3b+c=-3\\3c=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=0\end{matrix}\right.\) Vậy a = 1, b = -1, c = 0