Cho tam giác ABC, có Â = 90 độ, \(AH\perp BC\) tại H
C/ m \(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có
\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔABH\(\sim\)ΔCAH(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=HB\cdot HC\)(đpcm)
AB=AC \(\Rightarrow\Delta ABC\) cân tại A
\(\Rightarrow AH\) đồng thời là phân giác và trung tuyến
\(\Rightarrow\left\{{}\begin{matrix}\widehat{BAH}=\dfrac{1}{2}\widehat{A}=60^0\\BH=\dfrac{1}{2}BC=6\end{matrix}\right.\)
Trong tam giác vuông ABH:
\(tan\widehat{BAH}=\dfrac{BH}{AH}\Rightarrow AH=\dfrac{BH}{tan\widehat{BAH}}=\dfrac{6}{tan60^0}=2\sqrt{3}\)
1: Xét tứ giác AFDE có
\(\widehat{AFD}=\widehat{AED}=\widehat{FAE}=90^0\)
Do đó: AFDE là hình vuông
2: Xét ΔBED vuông tại E và ΔBHA vuông tại H có
\(\widehat{B}\) chung
Do đó; ΔBED∼ΔBHA
1: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=2,4(cm)
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông đối với tam giác vuông $AHB$, đường cao $HE$:
$EA.EB=HE^2$
Tương tự: $FA.FC=HF^2$
$\Rightarrow EA.EB+FA.FC=HE^2+HF^2=EF^2(1)$ (định lý Pitago)
Mặt khác: Dễ thấy $HEAF$ là hình chữ nhật do có 3 góc $\widehat{E}=\widehat{A}=\widehat{F}=90^0$
$\Rightarrow EF=HA$
$\Rightarrow EF^2=HA^2(2)$
Áp dụng hệ thức lượng trong tam giác vuông $ABC$:
$AH^2=HB.HC(3)$
Từ $(1);(2); (3)\Rightarrow EA.EB+FA.FC=HB.HC$ (đpcm)
Xét tam giác ABC vuông tại A, có đường cao AH.
Ta có: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
Vì \(AH\cdot BC=AC\cdot AB\) (chứng minh ở câu hỏi trước r)
\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}\Leftrightarrow\dfrac{1}{AH}=\dfrac{BC}{AB\cdot AC}\\ \Leftrightarrow\dfrac{1}{AH^2}=\dfrac{BC^2}{AB^2\cdot AC^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}\left(pytago\right)\\ \Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(2.S_{\Delta ABC}=AB.AC=AH.BC\\ \Rightarrow AB^2.AC^2=AH^2.BC^2\)
Tam giác ABC vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\) ( Định lý Pitago)
\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{AB^2+AC^2}{AB^2.AC^2}=\dfrac{BC^2}{AH^2.BC^2}=\dfrac{1}{AH^2}\)