phan tich da thuc sau thanh nhan tu :
\(49\left(y-4\right)^2-9y^2-36y-36\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=x^4-16x^2+100=x^4+20x^2+100-36x^2\)
\(=\left(x^2+10\right)^2-\left(6x\right)^2=\left(x^2-6x+10\right)\left(x^2+6x+10\right)\)
\(\left(x^2-8\right)^2+36\)
\(=x^4-16x^2+64+36\)
\(=x^4-16x^2+100\)
\(=x^4+20x^2+100-36x^2\)
\(=\left(x^2+10\right)^2-\left(6x\right)^2\)
\(=\left(x^2-6x+10\right)\left(x^2+6x+10\right)\)
dat y^2+y=z cho gon
\(z^2-9z+20=z^2-4z-5z+20=z\left(z-4\right)-5\left(z-4\right)=\left(z-4\right)\left(z-5\right)\)
\(thaylai:\left(y^2+y-4\right)\left(y^2+y-5\right)\)
Ta có (x^2 + y^2 )^3 + (z^2 – x^2 )^3 – (y^2 + z^2 )^3
= (x^2 + y^2 )^3 + (z^2 – x^2 )^3 + (-y^2 - z^2 )^3
Ta thấy x^2 + y^2 + z^2 – x^2 – y^2 – z^2 = 0
=> áp dụng nhận xét ta có: (x^2+y^2 )^3+ (z^2 -x^2 )^3 -y^2 -z^2 )^3
= 3(x^2 + y^2 ) (z^2 –x^2 ) (-y^2 – z^2 )
= 3(x^2+y^2 ) (x+z)(x-z)(y^2+z^2 )
\(P=x^2-6xy+9y^2=\left(x-3y\right)^2\)
(Áp dụng 7 hằng đẳng thức đáng nhớ)
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=\left(x-y\right)\left[3\left(x+y\right)-2\left(x-y\right)\right]\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=\left(x-y\right)\left[3\left(x+y\right)-2\left(x-y\right)\right]\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
Chúc bạn học tốt!!!
\(49.\left(y-4\right)^2-9y^2-36y-36\)
\(=7^2\left(y-4\right)^2-\left(9y^2+36y+36\right)\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28+3y+6\right).\left(7y-28-3y-6\right)\)
\(=\left(10y-22\right).\left(4y-34\right)\)
\(=4.\left(5y-11\right).\left(2y-17\right)\)
\(49\left(y-4\right)^2-9y^2-36y-36\)
\(=\) \(4\left(2y-17\right)\left(5y-11\right)\)