K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

đề có sai 1 chút nha bạn :

đề phải là \(a;b;c>0\) : \(CMR\) \(\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\ge6\) mới đúng

giải

đặt : \(P=\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\)

ta có : \(P=\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\)

\(P=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{9b}{a+c}+9\right)+\left(\dfrac{16c}{a+b}+16\right)-26\)

\(P=\left(\dfrac{a+b+c}{b+c}\right)+\left(\dfrac{9b+9a+9c}{a+c}\right)+\left(\dfrac{16c+16a+16b}{a+b}\right)-26\)

\(P=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)-26\)

\(P=\dfrac{1}{2}\left(\left(b+c\right)+\left(a+c\right)+\left(a+b\right)\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)-26\)

áp dụng bất đẳng thức Bunhiacopxki

ta có :

\(\left(\left(b+c\right)+\left(a+c\right)+\left(a+b\right)\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)\ge\left(\sqrt{1}+\sqrt{9}+\sqrt{16}\right)^2\)

\(\Leftrightarrow\left(\left(b+c\right)+\left(a+c\right)+\left(a+b\right)\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)\ge64\)

\(\Leftrightarrow\) \(P=\dfrac{1}{2}\left(\left(b+c\right)+\left(a+c\right)+\left(a+b\right)\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)-26\ge\dfrac{1}{2}.64-26\)

\(\Leftrightarrow P\ge6\)

vậy \(P=\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\ge6\) (đpcm)

dấu "=" xảy ra khi \(b+c=\dfrac{a+c}{9}=\dfrac{a+b}{16}\)

31 tháng 10 2017

Cảm ơn bạn nhiều...

AH
Akai Haruma
Giáo viên
19 tháng 7 2019

Lời giải:

Gọi biểu thức đã cho là $P$. Áp dụng BĐT Cauchy-Schwarz:

\(P+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{c+a-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)

\(=\frac{2(a+b+c)}{b+c-a}+\frac{\frac{9}{2}(a+b+c)}{c+a-b}+\frac{8(a+b+c)}{a+b-c}\)

\(=(a+b+c)\left(\frac{2}{b+c-a}+\frac{\frac{9}{2}}{c+a-b}+\frac{8}{a+b-c}\right)\)

\(\geq (a+b+c).\frac{(\sqrt{2}+\sqrt{\frac{9}{2}}+\sqrt{8})^2}{b+c-a+c+a-b+a+b-c}=\frac{81}{2}\)

\(\Rightarrow P\geq \frac{81}{2}-\frac{29}{2}=26\) (đpcm)

19 tháng 7 2019

Sao cô lại cộng thêm 29/2 vậy ạ? Em nghĩ như vậy thì phải biết trước được điểm rơi chứ nhỉ?

9 tháng 9 2017

Đặt \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\)\(\left(x,y,z>0\right)\)\(\Rightarrow\left\{{}\begin{matrix}x+y=2c\\y+z=2a\\x+z=2b\end{matrix}\right.\)

Thì ta có: \(\dfrac{2\left(y+z\right)}{x}+\dfrac{9\left(x+z\right)}{2y}+\dfrac{8\left(x+y\right)}{z}\ge26\)

Áp dụng BĐT AM-GM ta có:

\(VT=\dfrac{2\left(y+z\right)}{x}+\dfrac{9\left(x+z\right)}{2y}+\dfrac{8\left(x+y\right)}{z}\)

\(=\dfrac{2y}{x}+\dfrac{2z}{x}+\dfrac{9x}{2y}+\dfrac{9z}{2y}+\dfrac{8x}{z}+\dfrac{8y}{z}\)

\(=\left(\dfrac{2y}{x}+\dfrac{9x}{2y}\right)+\left(\dfrac{2z}{x}+\dfrac{8x}{z}\right)+\left(\dfrac{9z}{2y}+\dfrac{8y}{z}\right)\)

\(\ge2\sqrt{\dfrac{2y}{x}\cdot\dfrac{9x}{2y}}+2\sqrt{\dfrac{2z}{x}\cdot\dfrac{8x}{z}}+2\sqrt{\dfrac{9z}{2y}\cdot\dfrac{8y}{z}}\)

\(\ge6+8+12=26=VP\)

25 tháng 10 2017

Min = 26 khi a,b,c = bao nhiêu v bạn ???

AH
Akai Haruma
Giáo viên
20 tháng 2 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)

\(P+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{a+c-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)

\(=\frac{2(a+b+c)}{b+c-a}+\frac{9(a+b+c)}{2(a+c-b)}+\frac{8(a+b+c)}{a+b-c}\)

\(=2(a+b+c)\left(\frac{1}{b+c-a}+\frac{\frac{9}{4}}{a+c-b}+\frac{4}{a+b-c}\right)\)

\(\geq 2(a+b+c).\frac{(1+\frac{3}{2}+2)^2}{b+c-a+a+c-b+a+b-c}=\frac{81}{2}.(a+b+c).\frac{1}{a+b+c}=\frac{81}{2}\)

\(\Rightarrow P\geq \frac{81}{2}-\frac{29}{2}=26\)

Vậy \(P_{\min}=26\)

AH
Akai Haruma
Giáo viên
11 tháng 11 2018

Xem thêm tại đây.

Câu hỏi của Trương quang huy hoàng - Toán lớp 9 | Học trực tuyến

AH
Akai Haruma
Giáo viên
11 tháng 11 2018

Lời giải:

Ta có:

\(A=\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)

\(\Rightarrow A+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{a+c-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)

\(A+\frac{29}{2}=\frac{2(a+b+c)}{b+c-a}+\frac{\frac{9}{2}(a+b+c)}{a+c-b}+\frac{8(a+b+c)}{a+b-c}\)

\(A+\frac{29}{2}=(a+b+c)\left(\frac{2}{b+c-a}+\frac{\frac{9}{2}}{a+c-b}+\frac{8}{a+b-c}\right)\)

\(\geq (a+b+c).\frac{(\sqrt{2}+\sqrt{\frac{9}{2}}+\sqrt{8})^2}{b+c-a+a+c-b+a+b-c}=\frac{81}{2}\)

(Áp dụng BĐT S.Vac -xơ)

\(\Rightarrow A\geq 26\)

Vậy \(A_{\min}=26\)

1 tháng 6 2018

: -> Câu hỏi của Almira

21 tháng 4 2018

==" nghiện zero 9 ak :))

21 tháng 4 2018

Nghe mấy tiền bối đồn là đề này nằm trong đề đại học năm nào đó. Tự tìm nhá